結果

問題 No.1239 Multiplication -2
ユーザー FF256grhyFF256grhy
提出日時 2020-09-26 01:24:03
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 76 ms / 2,000 ms
コード長 7,492 bytes
コンパイル時間 2,188 ms
コンパイル使用メモリ 209,344 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-28 09:30:14
合計ジャッジ時間 4,803 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 20 ms
6,940 KB
testcase_16 AC 32 ms
6,944 KB
testcase_17 AC 51 ms
6,944 KB
testcase_18 AC 61 ms
6,944 KB
testcase_19 AC 47 ms
6,940 KB
testcase_20 AC 57 ms
6,940 KB
testcase_21 AC 74 ms
6,944 KB
testcase_22 AC 57 ms
6,944 KB
testcase_23 AC 59 ms
6,944 KB
testcase_24 AC 45 ms
6,940 KB
testcase_25 AC 19 ms
6,940 KB
testcase_26 AC 55 ms
6,944 KB
testcase_27 AC 22 ms
6,940 KB
testcase_28 AC 69 ms
6,940 KB
testcase_29 AC 76 ms
6,944 KB
testcase_30 AC 29 ms
6,940 KB
testcase_31 AC 43 ms
6,944 KB
testcase_32 AC 71 ms
6,944 KB
testcase_33 AC 50 ms
6,944 KB
testcase_34 AC 47 ms
6,940 KB
testcase_35 AC 24 ms
6,940 KB
testcase_36 AC 21 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incIX(i, 0, n)
#define dec(i, n)  decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x <  r); };
auto inXI = [](auto x, auto l, auto r) { return (l <  x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l <  x && x <  r); };
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<typename U, int I> void tin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void tin_(U & t) { (* IS) >> get<I>(t); tin_<U, I + 1, B ...>(t); }
template<typename ... T> auto tin() { tuple<T ...> t; tin_<tuple<T ...>, 0, T ...>(t); return t; }
// input: array
template<typename T, int N> auto ain() { array<T, N> a; inc(i, N) { (* IS) >> a[i]; } return a; }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS)      << flush; }

// ---- ----

template<LL M> class ModInt {
private:
	LL v;
	pair<LL, LL> ext_gcd(LL a, LL b) {
		if(b == 0) { assert(a == 1); return { 1, 0 }; }
		auto p = ext_gcd(b, a % b);
		return { p.SE, p.FI - (a / b) * p.SE };
	}
public:
	ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
	LL val() { return v; }
	static LL mod() { return M; }
	ModInt inv() { return ext_gcd(M, v).SE; }
	ModInt exp(LL b) {
		ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
		while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
		return p;
	}
	friend bool      operator< (ModInt    a, ModInt   b) { return (a.v <  b.v); }
	friend bool      operator> (ModInt    a, ModInt   b) { return (a.v >  b.v); }
	friend bool      operator<=(ModInt    a, ModInt   b) { return (a.v <= b.v); }
	friend bool      operator>=(ModInt    a, ModInt   b) { return (a.v >= b.v); }
	friend bool      operator==(ModInt    a, ModInt   b) { return (a.v == b.v); }
	friend bool      operator!=(ModInt    a, ModInt   b) { return (a.v != b.v); }
	friend ModInt    operator+ (ModInt    a            ) { return ModInt(+a.v); }
	friend ModInt    operator- (ModInt    a            ) { return ModInt(-a.v); }
	friend ModInt    operator+ (ModInt    a, ModInt   b) { return ModInt(a.v + b.v); }
	friend ModInt    operator- (ModInt    a, ModInt   b) { return ModInt(a.v - b.v); }
	friend ModInt    operator* (ModInt    a, ModInt   b) { return ModInt(a.v * b.v); }
	friend ModInt    operator/ (ModInt    a, ModInt   b) { return a * b.inv(); }
	friend ModInt    operator^ (ModInt    a, LL       b) { return a.exp(b); }
	friend ModInt  & operator+=(ModInt  & a, ModInt   b) { return (a = a + b); }
	friend ModInt  & operator-=(ModInt  & a, ModInt   b) { return (a = a - b); }
	friend ModInt  & operator*=(ModInt  & a, ModInt   b) { return (a = a * b); }
	friend ModInt  & operator/=(ModInt  & a, ModInt   b) { return (a = a / b); }
	friend ModInt  & operator^=(ModInt  & a, LL       b) { return (a = a ^ b); }
	friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }
	friend ostream & operator<<(ostream & s, ModInt   b) { return (s << b.v); }
};

// ----

using MI = ModInt<998244353>;

auto mo = [](auto a, auto b) { assert(b != 0); a %= b; if(a < 0) { a += abs(b); } return a; };

int main() {
	auto n = in<int>();
	vector<int> a(n + 2);
	inc1(i, n) { cin >> a[i]; }
	/*
	{
		MI ans = 0;
		inc1(l, n) {
		inc1(r, n) {
			if_not(l <= r) { continue; }
			LL p = 1;
			incII(i, l, r) { p *= a[i]; }
			if(p == -2) {
				int L = l + (l == 1 ? 1 : 0);
				int R = r - (r == n ? 1 : 0);
				ans += MI(2) ^ (L - R - 2);
			} 
		}
		}
		out(ans);
	}
	*/
	MI ans = 0;
	inc1(i, n) {
		if_not(abs(a[i]) == 2) { continue; }
		vector<MI> sl(2), sr(2);
		int s = 0;
		int l = i;
		while(l == i || abs(a[l]) == 1) {
			s = mo(s + (a[l] == -1 ? 1 : 0), 2);
			sl[s] += MI(2) ^ (+(l + (l == 1 ? 1 : 0) - 1));
			l--;
		}
		s = 0;
		int r = i;
		while(r == i || abs(a[r]) == 1) {
			s = mo(s + (a[r] == -1 ? 1 : 0), 2);
			sr[s] += MI(2) ^ (-(r - (r == n ? 1 : 0) + 1));
			r++;
		}
		inc(x, 2) {
		inc(y, 2) {
			if((a[i] < 0) == (x == y)) { ans += sl[x] * sr[y]; }
		}
		}
	}
	out(ans);
}
0