結果
問題 | No.1239 Multiplication -2 |
ユーザー | keijak |
提出日時 | 2020-09-26 07:34:57 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 6,398 bytes |
コンパイル時間 | 2,612 ms |
コンパイル使用メモリ | 197,512 KB |
最終ジャッジ日時 | 2025-01-14 21:59:21 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,820 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,824 KB |
testcase_09 | AC | 2 ms
6,824 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | AC | 1 ms
6,820 KB |
testcase_15 | AC | 13 ms
6,816 KB |
testcase_16 | AC | 21 ms
6,820 KB |
testcase_17 | AC | 35 ms
6,820 KB |
testcase_18 | AC | 43 ms
6,816 KB |
testcase_19 | AC | 29 ms
6,816 KB |
testcase_20 | AC | 37 ms
6,816 KB |
testcase_21 | AC | 51 ms
6,820 KB |
testcase_22 | AC | 39 ms
6,820 KB |
testcase_23 | AC | 39 ms
6,816 KB |
testcase_24 | AC | 29 ms
6,820 KB |
testcase_25 | AC | 11 ms
6,820 KB |
testcase_26 | AC | 34 ms
6,820 KB |
testcase_27 | AC | 16 ms
6,820 KB |
testcase_28 | AC | 49 ms
6,816 KB |
testcase_29 | AC | 52 ms
6,816 KB |
testcase_30 | AC | 20 ms
6,816 KB |
testcase_31 | AC | 30 ms
6,820 KB |
testcase_32 | AC | 51 ms
6,824 KB |
testcase_33 | AC | 35 ms
6,820 KB |
testcase_34 | AC | 32 ms
6,816 KB |
testcase_35 | AC | 16 ms
6,816 KB |
testcase_36 | AC | 14 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using i64 = std::int64_t; using u64 = std::uint64_t; #define REP(i, n) for (int i = 0; i < (i64)(n); ++i) #define ALL(x) std::begin(x), std::end(x) #define SIZE(a) (int)((a).size()) template <class T> inline bool chmax(T &a, T b) { return a < b and ((a = std::move(b)), true); } template <class T> inline bool chmin(T &a, T b) { return a > b and ((a = std::move(b)), true); } template <typename T> using V = std::vector<T>; template <typename T> std::vector<T> make_vec(size_t n, T a) { return std::vector<T>(n, a); } template <typename... Ts> auto make_vec(size_t n, Ts... ts) { return std::vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); } template <typename T> std::istream &operator>>(std::istream &is, std::vector<T> &a) { for (auto &x : a) is >> x; return is; } template <typename Container> std::ostream &pprint(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream *os = nullptr) { if (os == nullptr) os = &std::cout; auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) *os << sep; *os << *it; } return *os << ends; } template <typename T, typename = void> struct is_iterable : std::false_type {}; template <typename T> struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())), decltype(std::end(std::declval<T>()))>> : std::true_type {}; template <typename T, typename = std::enable_if_t<is_iterable<T>::value && !std::is_same<T, std::string>::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return pprint(a, ", ", "", &(os << "{")) << "}"; } template <typename T, typename U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) { return os << "(" << a.first << ", " << a.second << ")"; } #ifdef ENABLE_DEBUG template <typename T> void pdebug(const T &value) { std::cerr << value; } template <typename T, typename... Ts> void pdebug(const T &value, const Ts &... args) { pdebug(value); std::cerr << ", "; pdebug(args...); } #define DEBUG(...) \ do { \ std::cerr << " \033[33m (L" << __LINE__ << ") "; \ std::cerr << #__VA_ARGS__ << ":\033[0m "; \ pdebug(__VA_ARGS__); \ std::cerr << std::endl; \ } while (0) #else #define pdebug(...) #define DEBUG(...) #endif // Extended Euclidean algorithm // Returns gcd(a,b). // x and y are set to satisfy `a*x + b*y == gcd(a,b)` long long ext_gcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = ext_gcd(b, a % b, y, x); y -= a / b * x; return d; } template <unsigned int M> struct ModInt { constexpr ModInt(long long val = 0) : _v(0) { if (val < 0) { long long k = (abs(val) + M - 1) / M; val += k * M; } assert(val >= 0); _v = val % M; } static constexpr int mod() { return M; } static constexpr unsigned int umod() { return M; } inline unsigned int val() const { return _v; } ModInt &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } ModInt &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } ModInt operator++(int) { auto result = *this; ++*this; return result; } ModInt operator--(int) { auto result = *this; --*this; return result; } constexpr ModInt operator-() const { return ModInt(-_v); } constexpr ModInt &operator+=(const ModInt &a) { if ((_v += a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator-=(const ModInt &a) { if ((_v += M - a._v) >= M) _v -= M; return *this; } constexpr ModInt &operator*=(const ModInt &a) { _v = ((unsigned long long)(_v)*a._v) % M; return *this; } constexpr ModInt pow(long long t) const { assert(t >= 0); ModInt base = *this; ModInt res = 1; while (t) { if (t & 1) res *= base; base *= base; t >>= 1; } return res; } // Inverse by Extended Euclidean algorithm. // M doesn't need to be prime, but x and M must be coprime. constexpr ModInt inv() const { assert(_v != 0); long long x, y; long long g = ext_gcd(_v, M, x, y); assert(g == 1LL); // gcd(_v, M) must be 1. return x; } constexpr ModInt &operator/=(const ModInt &a) { return *this *= a.inv(); } friend constexpr ModInt operator+(const ModInt &a, const ModInt &b) { return ModInt(a) += b; } friend constexpr ModInt operator-(const ModInt &a, const ModInt &b) { return ModInt(a) -= b; } friend constexpr ModInt operator*(const ModInt &a, const ModInt &b) { return ModInt(a) *= b; } friend constexpr ModInt operator/(const ModInt &a, const ModInt &b) { return ModInt(a) /= b; } friend constexpr bool operator==(const ModInt &a, const ModInt &b) { return a._v == b._v; } friend constexpr bool operator!=(const ModInt &a, const ModInt &b) { return a._v != b._v; } friend std::istream &operator>>(std::istream &is, ModInt &a) { return is >> a._v; } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a._v; } private: unsigned int _v; }; const unsigned int MOD = 998244353; using Mint = ModInt<MOD>; using namespace std; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int N; cin >> N; V<int> A(N); cin >> A; Mint P = 0; REP(i, N) { if (abs(A[i]) != 2) continue; bool neg = A[i] < 0; Mint ae = 0, ao = 0; (neg ? ao : ae) += Mint(2).pow(max(i - 1, 0)); for (int j = i - 1; j >= 0; --j) { if (abs(A[j]) != 1) break; if (A[j] < 0) neg = not neg; if (neg) { ao += Mint(2).pow(max(j - 1, 0)); } else { ae += Mint(2).pow(max(j - 1, 0)); } } P += Mint(2).pow(max(N - i - 2, 0)) * ao; neg = false; for (int j = i + 1; j < N; ++j) { if (abs(A[j]) != 1) break; if (A[j] < 0) neg = not neg; if (neg) { P += Mint(2).pow(max(N - j - 2, 0)) * ae; } else { P += Mint(2).pow(max(N - j - 2, 0)) * ao; } } } Mint Q = Mint(2).pow(N - 1); DEBUG(P, Q); cout << (P * Q.inv()) << endl; }