結果
| 問題 |
No.470 Inverse S+T Problem
|
| コンテスト | |
| ユーザー |
fukafukatani
|
| 提出日時 | 2020-09-26 10:03:39 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,026 bytes |
| コンパイル時間 | 15,387 ms |
| コンパイル使用メモリ | 384,772 KB |
| 実行使用メモリ | 441,344 KB |
| 最終ジャッジ日時 | 2024-12-22 14:02:33 |
| 合計ジャッジ時間 | 27,643 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 24 TLE * 3 |
コンパイルメッセージ
warning: unused variable: `i`
--> src/main.rs:22:9
|
22 | for i in 0..n {
| ^ help: if this is intentional, prefix it with an underscore: `_i`
|
= note: `#[warn(unused_variables)]` on by default
warning: function `read_vec` is never used
--> src/main.rs:65:4
|
65 | fn read_vec<T: std::str::FromStr>() -> Vec<T> {
| ^^^^^^^^
|
= note: `#[warn(dead_code)]` on by default
ソースコード
#![allow(unused_imports)]
use std::cmp::*;
use std::collections::*;
use std::io::Write;
use std::ops::Bound::*;
#[allow(unused_macros)]
macro_rules! debug {
($($e:expr),*) => {
#[cfg(debug_assertions)]
$({
let (e, mut err) = (stringify!($e), std::io::stderr());
writeln!(err, "{} = {:?}", e, $e).unwrap()
})*
};
}
fn main() {
let n = read::<usize>();
let mut words = vec![];
for i in 0..n {
let word = read::<String>().chars().collect::<Vec<_>>();
words.push(word);
}
let mut cons = vec![];
for i in 0..n {
let w1 = &words[i];
for j in i + 1..n {
let w2 = &words[j];
if w1[0] == w2[0] || w1[1..3] == w2[1..3] {
cons.push((i as i32 + 1, j as i32 + 1));
}
if w1[0] == w2[2] || w1[1..3] == w2[0..2] {
cons.push((i as i32 + 1, -(j as i32 + 1)));
}
if w1[2] == w2[0] || w1[0..2] == w2[1..3] {
cons.push((-(i as i32 + 1), j as i32 + 1));
}
if w1[2] == w2[2] || w1[0..2] == w2[0..2] {
cons.push((-(i as i32 + 1), -(j as i32 + 1)));
}
}
}
if let Some(result) = two_sat(n, &cons) {
for i in 0..n {
if result[i] {
println!("{}{} {}", words[i][0], words[i][1], words[i][2]);
} else {
println!("{} {}{}", words[i][0], words[i][1], words[i][2]);
}
}
} else {
println!("Impossible");
}
}
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
struct SCC {
n: usize,
ncc: usize,
g: Vec<Vec<usize>>, // graph in adjacent list
rg: Vec<Vec<usize>>, // reverse graph
cmp: Vec<usize>, // topological order
}
impl SCC {
fn new(n: usize) -> Self {
SCC {
n: n,
ncc: n + 1,
g: vec![Vec::new(); n],
rg: vec![Vec::new(); n],
cmp: vec![0; n],
}
}
fn add_edge(&mut self, from: usize, to: usize) {
self.g[from].push(to);
self.rg[to].push(from);
}
fn dfs(&self, v: usize, used: &mut [bool], vs: &mut Vec<usize>) {
used[v] = true;
for &w in self.g[v].iter() {
if !used[w] {
self.dfs(w, used, vs);
}
}
vs.push(v);
}
fn rdfs(&self, v: usize, k: usize, used: &mut [bool], cmp: &mut [usize]) {
used[v] = true;
cmp[v] = k;
for &w in self.rg[v].iter() {
if !used[w] {
self.rdfs(w, k, used, cmp);
}
}
}
fn scc(&mut self) -> usize {
let n = self.n;
let mut used = vec![false; n];
let mut vs = Vec::new();
let mut cmp = vec![0; n];
for v in 0..n {
if !used[v] {
self.dfs(v, &mut used, &mut vs);
}
}
for u in used.iter_mut() {
*u = false;
}
let mut k = 0;
for &t in vs.iter().rev() {
if !used[t] {
self.rdfs(t, k, &mut used, &mut cmp);
k += 1;
}
}
self.ncc = k;
self.cmp = cmp;
k
}
#[allow(dead_code)]
fn top_order(&self) -> Vec<usize> {
assert!(self.ncc <= self.n);
self.cmp.clone()
}
/*
* Returns a dag whose vertices are scc's, and whose edges are those of the original graph.
*/
#[allow(dead_code)]
fn dag(&self) -> Vec<Vec<usize>> {
assert!(self.ncc <= self.n);
let ncc = self.ncc;
let mut ret = vec![HashSet::new(); ncc];
let n = self.n;
for i in 0..n {
for &to in self.g[i].iter() {
if self.cmp[i] != self.cmp[to] {
assert!(self.cmp[i] < self.cmp[to]);
ret[self.cmp[i]].insert(self.cmp[to]);
}
}
}
ret.into_iter()
.map(|set| set.into_iter().collect())
.collect()
}
#[allow(dead_code)]
fn rdag(&self) -> Vec<Vec<usize>> {
assert!(self.ncc <= self.n);
let ncc = self.ncc;
let mut ret = vec![HashSet::new(); ncc];
let n = self.n;
for i in 0..n {
for &to in self.g[i].iter() {
if self.cmp[i] != self.cmp[to] {
assert!(self.cmp[i] < self.cmp[to]);
ret[self.cmp[to]].insert(self.cmp[i]);
}
}
}
ret.into_iter()
.map(|set| set.into_iter().collect())
.collect()
}
}
/**
* 2-SAT solver.
* n: the number of variables (v_1, ..., v_n)
* cons: constraints, given in 2-cnf
* i (1 <= i <= n) means v_i, -i (1 <= i <= n) means not v_i.
* Returns: None if there's no assignment that satisfies cons.
* Otherwise, it returns an assignment that safisfies cons. (true: true, false: false)
* Dependencies: SCC.rs
* Verified by: Codeforces #400 D
* (http://codeforces.com/contest/776/submission/24957215)
*/
fn two_sat(n: usize, cons: &[(i32, i32)]) -> Option<Vec<bool>> {
let mut scc = SCC::new(2 * n);
let ni = n as i32;
for &(c1, c2) in cons.iter() {
let x = if c1 > 0 { c1 - 1 + ni } else { -c1 - 1 } as usize;
let y = if c2 > 0 { c2 - 1 } else { -c2 - 1 + ni } as usize;
scc.add_edge(x, y);
scc.add_edge((y + n) % (2 * n), (x + n) % (2 * n));
}
scc.scc();
let mut result = vec![false; n];
let top_ord = scc.top_order();
for i in 0..n {
if top_ord[i] == top_ord[i + n] {
return None;
}
result[i] = top_ord[i] > top_ord[i + n];
}
Some(result)
}
fukafukatani