結果
| 問題 |
No.768 Tapris and Noel play the game on Treeone
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-09-27 10:32:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 78 ms / 2,000 ms |
| コード長 | 4,804 bytes |
| コンパイル時間 | 2,214 ms |
| コンパイル使用メモリ | 217,628 KB |
| 最終ジャッジ日時 | 2025-01-14 22:45:02 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename T>
struct ReRooting
{
using F = function<T(T, int)>;
using F2 = function<T(T, T)>;
int V;
vector<vector<int>> G;
vector<vector<T>> dp;
// dp_v = g(merge(f(dp_c1,c1), f(dp_c2,c2), ..., f(dp_ck,ck)), v)
F f, g;
F2 merge;
T mi; // identity of merge
ReRooting() {}
ReRooting(int V, F f, F2 merge, T mi, F g)
: V(V), f(f), merge(merge), mi(mi), g(g)
{
G.resize(V);
dp.resize(V);
}
void read_graph(int index = 1)
{
int a, b;
for (int i = 0; i < V - 1; ++i)
{
cin >> a >> b;
a -= index, b -= index;
G[a].emplace_back(b);
G[b].emplace_back(a);
}
}
void add_edge(int a, int b)
{
G[a].emplace_back(b);
G[b].emplace_back(a);
}
T dfs1(int p, int v)
{
T res = mi;
for (int i = 0; i < G[v].size(); ++i)
{
if (G[v][i] == p)
continue;
dp[v][i] = dfs1(v, G[v][i]);
res = merge(res, f(dp[v][i], G[v][i]));
}
return g(res, v);
}
void dfs2(int p, int v, T from_par)
{
for (int i = 0; i < G[v].size(); ++i)
{
if (G[v][i] == p)
{
dp[v][i] = from_par;
break;
}
}
vector<T> pR(G[v].size() + 1);
pR[G[v].size()] = mi;
for (int i = G[v].size(); i > 0; --i)
pR[i - 1] = merge(pR[i], f(dp[v][i - 1], G[v][i - 1]));
T pL = mi;
for (int i = 0; i < G[v].size(); ++i)
{
if (G[v][i] != p)
{
T val = merge(pL, pR[i + 1]);
dfs2(v, G[v][i], g(val, v));
}
pL = merge(pL, f(dp[v][i], G[v][i]));
}
}
void calc(int root = 0)
{
for (int i = 0; i < V; ++i)
dp[i].resize(G[i].size());
dfs1(-1, root);
dfs2(-1, root, mi);
}
T solve(int v)
{
T ans = mi;
for (int i = 0; i < G[v].size(); ++i)
ans = merge(ans, f(dp[v][i], G[v][i]));
return g(ans, v);
}
};
void solve()
{
int n;
cin >> n;
auto f = [](bool a, int v) { return a; };
auto merge = [](bool a, bool b) { return a or b; };
auto g = [](bool a, int v) { return !a; };
ReRooting<bool> re(n, f, merge, false, g);
re.read_graph();
re.calc();
vector<int> ans;
rep(i, n)
{
if (re.solve(i))
ans.push_back(i + 1);
}
cout << ans.size() << "\n";
for (auto v : ans)
cout << v << "\n";
}
int main()
{
solve();
}
stoq