結果
| 問題 |
No.1207 グラフX
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-09-27 13:48:38 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 328 ms / 2,000 ms |
| コード長 | 9,077 bytes |
| コンパイル時間 | 3,037 ms |
| コンパイル使用メモリ | 230,600 KB |
| 最終ジャッジ日時 | 2025-01-14 22:51:51 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 46 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
#pragma region mint
template <int MOD>
struct Fp
{
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD)
{
if (val < 0)
v += MOD;
}
constexpr int getmod()
{
return MOD;
}
constexpr Fp operator-() const noexcept
{
return val ? MOD - val : 0;
}
constexpr Fp operator+(const Fp &r) const noexcept
{
return Fp(*this) += r;
}
constexpr Fp operator-(const Fp &r) const noexcept
{
return Fp(*this) -= r;
}
constexpr Fp operator*(const Fp &r) const noexcept
{
return Fp(*this) *= r;
}
constexpr Fp operator/(const Fp &r) const noexcept
{
return Fp(*this) /= r;
}
constexpr Fp &operator+=(const Fp &r) noexcept
{
val += r.val;
if (val >= MOD)
val -= MOD;
return *this;
}
constexpr Fp &operator-=(const Fp &r) noexcept
{
val -= r.val;
if (val < 0)
val += MOD;
return *this;
}
constexpr Fp &operator*=(const Fp &r) noexcept
{
val = val * r.val % MOD;
if (val < 0)
val += MOD;
return *this;
}
constexpr Fp &operator/=(const Fp &r) noexcept
{
long long a = r.val, b = MOD, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
val = val * u % MOD;
if (val < 0)
val += MOD;
return *this;
}
constexpr bool operator==(const Fp &r) const noexcept
{
return this->val == r.val;
}
constexpr bool operator!=(const Fp &r) const noexcept
{
return this->val != r.val;
}
friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept
{
return os << x.val;
}
friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept
{
return is >> x.val;
}
};
Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept
{
if (n == 0)
return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1)
t = t * a;
return t;
}
using mint = Fp<MOD>;
#pragma endregion
struct UnionFind
{
vector<int> par, rank_;
UnionFind() {}
UnionFind(int n) : par(n), rank_(n, 0) { iota(begin(par), end(par), 0); }
int root(int x) { return par[x] == x ? x : par[x] = root(par[x]); }
bool same(int x, int y) { return root(x) == root(y); }
void unite(int x, int y)
{
x = root(x);
y = root(y);
if (x == y)
return;
if (rank_[x] < rank_[y])
{
par[x] = y;
}
else
{
par[y] = x;
if (rank_[x] == rank_[y])
rank_[x]++;
}
}
};
template <typename T>
struct kruskal
{
UnionFind uf;
kruskal(int n = 200010) : uf(n) {}
struct edge
{
int u, v;
T cost;
int num;
};
vector<edge> E;
set<int> used_num;
void add_E(int s, int t, T w)
{
static int i = 0;
E.push_back({s, t, w, i++});
}
T calc()
{
sort(E.begin(), E.end(), [](edge &e1, edge &e2) { return e1.cost < e2.cost; });
T res = 0;
for (auto e : E)
{
if (!uf.same(e.u, e.v))
{
uf.unite(e.u, e.v);
res += e.cost;
used_num.insert(e.num);
}
}
return res;
}
bool used(int i) { return used_num.count(i); }
};
template <typename T = ll>
struct Tree
{
int V;
using P = pair<int, ll>;
vector<vector<P>> E;
vector<int> par;
vector<int> depth;
vector<int> sub;
vector<T> dist;
vector<vector<int>> par_double;
Tree(int V_) : V(V_)
{
E.resize(V);
depth.resize(V);
dist.resize(V);
sub.resize(V);
}
void add_E(int a, int b, T w = T(1), bool direction = false)
{
E[a].push_back(make_pair(b, w));
if (!direction)
E[b].push_back(make_pair(a, w));
}
int dfs(int p, int d, T w)
{
sub[p] = 1;
for (auto pi : E[p])
{
int v = pi.first;
if (par[p] == v)
continue;
par[v] = p;
depth[v] = d + 1;
dist[v] = w + pi.second;
sub[p] += dfs(v, depth[v], dist[v]);
}
return sub[p];
}
void make_tree(int root = 0)
{
calculated = false;
par.assign(V, -1);
par_double.assign(V, vector<int>(25));
depth[root] = 0;
dist[root] = T(0);
dfs(root, 0, 0);
}
bool calculated;
void calc_double()
{
for (int i = 0; i < V; i++)
par_double[i][0] = par[i];
for (int k = 0; k < 24; k++)
{
for (int i = 0; i < V; i++)
{
if (par_double[i][k] == -1)
par_double[i][k + 1] = -1;
else
par_double[i][k + 1] = par_double[par_double[i][k]][k];
}
}
}
int getLCA(int a, int b)
{
if (!calculated)
{
calc_double();
calculated = true;
}
if (a == b)
return a;
if (depth[a] < depth[b])
swap(a, b);
for (int k = 24; k >= 0; k--)
{
if (par_double[a][k] != -1 && depth[par_double[a][k]] >= depth[b])
a = par_double[a][k];
}
if (a == b)
return a;
for (int k = 24; k >= 0; k--)
{
if (par_double[a][k] != -1 && par_double[a][k] != par_double[b][k])
{
a = par_double[a][k];
b = par_double[b][k];
}
}
return par_double[a][0];
}
int length(int a, int b)
{
return depth[a] + depth[b] - 2 * depth[getLCA(a, b)];
}
int distance(int a, int b)
{
return dist[a] + dist[b] - 2 * dist[getLCA(a, b)];
}
T diameter(int &a, int &b)
{
T Max(-1);
for (int i = 0; i < V; i++)
{
if (Max < distance(0, i))
Max = distance(0, i), a = i;
}
for (int i = 0; i < V; i++)
{
if (Max < distance(a, i))
Max = distance(a, i), b = i;
}
return Max;
}
T diameter()
{
int a, b;
return diameter(a, b);
}
int diameter_l(int &a, int &b)
{
int Max = -1;
for (int i = 0; i < V; i++)
{
if (Max < length(0, i))
Max = length(0, i), a = i;
}
for (int i = 0; i < V; i++)
{
if (Max < length(a, i))
Max = length(a, i), b = i;
}
return Max;
}
int diameter_l()
{
int a, b;
return diameter_l(a, b);
}
};
void solve()
{
ll n, m;
ll x;
cin >> n >> m >> x;
kruskal<ll> ks(n);
rep(i, m)
{
int x, y;
ll z;
cin >> x >> y >> z;
x--, y--;
ks.add_E(x, y, z);
}
ks.calc();
Tree<ll> tr(n);
for (auto i : ks.used_num)
{
auto [u, v, z, num] = ks.E[i];
tr.add_E(u, v, z);
}
tr.make_tree();
mint ans = 0;
for (auto i : ks.used_num)
{
auto [u, v, z, num] = ks.E[i];
if (tr.par[v] == u)
swap(u, v);
ll t = tr.sub[u] * (n - tr.sub[u]);
ans += modpow(x, z) * t;
}
cout << ans << "\n";
}
int main()
{
solve();
}
stoq