結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
Pyこまる
|
| 提出日時 | 2020-09-29 08:18:14 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 7,197 bytes |
| コンパイル時間 | 2,127 ms |
| コンパイル使用メモリ | 172,192 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-18 18:28:23 |
| 合計ジャッジ時間 | 2,761 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 RE * 6 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
template <typename T = i32>
T gcd(T a, T b) {
while (b) swap(a %= b, b);
return a;
}
u64 gcd_fast(u64 x, u64 y) {
if (x == 0 || y == 0) return x + y;
u32 bx = __builtin_ctz(x);
u32 by = __builtin_ctz(y);
u32 k = min(bx, by);
x >>= bx, y >>= by;
while (x != 0 && y != 0)
if (x == y) return x << k;
else if (x > y) x = (x - y) >> __builtin_ctz(x - y);
else y = (y - x) >> __builtin_ctz(y - x);
return (x + y) << k;
}
template <typename T = i32>
T inv(T a, T p) {
T b = p, x = 1, y = 0;
while (a) {
T q = b % a;
swap(a, b /= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
template <typename T = int32_t, typename U = int64_t>
T modpow(T a, U n, T p) {
T ret = 1;
for (; n; n >>= 1, a = U(a) * a % p)
if (n & 1) ret = U(ret) * a % p;
return ret;
}
struct ArbitraryLazyMontgomeryModInt {
using mint = ArbitraryLazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static u32 mod;
static u32 r;
static u32 n2;
static u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u32 m) {
assert(m < (1 << 30));
assert((m & 1) == 1);
mod = m;
n2 = -u64(m) % m;
r = get_r();
assert(r * mod == 1);
}
u32 a;
ArbitraryLazyMontgomeryModInt() : a(0) {}
ArbitraryLazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){};
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = ArbitraryLazyMontgomeryModInt(t);
return (is);
}
mint inverse() const { return pow(mod - 2); }
u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;
struct montgomery64 {
using mint = montgomery64;
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r;
static u64 n2;
static u64 get_r() {
u64 ret = mod;
for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u64 m) {
assert(m < (1LL << 62));
assert((m & 1) == 1);
mod = m;
n2 = -u128(m) % m;
r = get_r();
assert(r * mod == 1);
}
u64 a;
montgomery64() : a(0) {}
montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};
static u64 reduce(const u128 &b) {
return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
}
mint &operator+=(const mint &b) {
if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b) {
if (i64(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b) {
a = reduce(u128(a) * b.a);
return *this;
}
mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint pow(u128 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = montgomery64(t);
return (is);
}
mint inverse() const { return pow(mod - 2); }
u64 get() const {
u64 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;
template <typename mint>
bool miller_rabin(u64 n, vector<u64> as) {
if (mint::get_mod() != n) mint::set_mod(n);
u64 d = n - 1;
while (~d&1) d >>= 1;
mint e{1}, rev{i64(n-1)};
for (u64 a : as) {
if (n <= a) break;
u64 t = d;
mint y = mint(a).pow(t);
while(t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(u64 n) {
if (n <= 3) return n == 2 || n == 3;
if (n % 2 == 0) return false;
if (n < (1LL << 30)) return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61});
else return miller_rabin<montgomery64>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
int main() {
int query;
u64 x;
cin >> query;
while (cin >> x) cout << x << " " << (is_prime(x) ? 1 : 0) << endl;
return 0;
}
Pyこまる