結果

問題 No.1099 Range Square Sum
ユーザー yuji9511yuji9511
提出日時 2020-09-29 16:47:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 121 ms / 2,000 ms
コード長 6,301 bytes
コンパイル時間 2,106 ms
コンパイル使用メモリ 209,656 KB
実行使用メモリ 22,328 KB
最終ジャッジ日時 2024-07-04 00:49:48
合計ジャッジ時間 6,155 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 1 ms
6,944 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 3 ms
6,940 KB
testcase_14 AC 3 ms
6,940 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 2 ms
6,944 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 118 ms
22,240 KB
testcase_22 AC 121 ms
22,292 KB
testcase_23 AC 119 ms
22,092 KB
testcase_24 AC 119 ms
22,228 KB
testcase_25 AC 119 ms
22,240 KB
testcase_26 AC 102 ms
22,328 KB
testcase_27 AC 99 ms
22,088 KB
testcase_28 AC 99 ms
22,160 KB
testcase_29 AC 99 ms
22,232 KB
testcase_30 AC 99 ms
22,212 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/*** author: yuji9511 ***/
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using lpair = pair<ll, ll>;
const ll MOD = 1e9+7;
const ll INF = 1e18;
#define rep(i,m,n) for(ll i=(m);i<(n);i++)
#define rrep(i,m,n) for(ll i=(m);i>=(n);i--)
#define printa(x,n) for(ll i=0;i<n;i++){cout<<(x[i])<<" \n"[i==n-1];};
void print() {}
template <class H,class... T>
void print(H&& h, T&&... t){cout<<h<<" \n"[sizeof...(t)==0];print(forward<T>(t)...);}
#define debug(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << "\n"

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push(r >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

typedef struct {
    ll v;
    ll v2;
    ll len;
} S;

using F = ll;
ll ID = INF+1;
S op(S a, S b){
    return {a.v + b.v, a.v2 + b.v2, a.len + b.len};
}

S e(){
    return {0,0,0};
}

S mapping(F f, S x){
    return {x.v + x.len * f, x.v2 + 2 * f * x.v + x.len * f * f, x.len};
}

F composition(F f, F g){
    return f + g;
}

F id(){
    return 0;
}


void solve(){
    ll N;
    cin >> N;
    vector<S> A(N);
    rep(i,0,N){
        ll tmp;
        cin >> tmp;
        A[i] = {tmp, tmp*tmp, 1};
    }

    lazy_segtree<S, op, e, F, mapping, composition, id> sg(A);
    ll Q;
    cin >> Q;
    while(Q--){
        ll q;
        cin >> q;
        if(q == 1){
            ll l,r,x;
            cin >> l >> r >> x;
            l--; r--;
            sg.apply(l, r+1, x);
        }else{
            ll l,r;
            cin >> l >> r;
            l--; r--;
            print(sg.prod(l, r+1).v2);
        }
    }



    
}

int main(){
    cin.tie(0);
    ios::sync_with_stdio(false);
    solve();
}
0