結果

問題 No.1099 Range Square Sum
ユーザー yuji9511
提出日時 2020-09-29 16:47:54
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 6,301 bytes
コンパイル時間 1,928 ms
コンパイル使用メモリ 202,344 KB
最終ジャッジ日時 2025-01-14 23:21:35
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/*** author: yuji9511 ***/
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using lpair = pair<ll, ll>;
const ll MOD = 1e9+7;
const ll INF = 1e18;
#define rep(i,m,n) for(ll i=(m);i<(n);i++)
#define rrep(i,m,n) for(ll i=(m);i>=(n);i--)
#define printa(x,n) for(ll i=0;i<n;i++){cout<<(x[i])<<" \n"[i==n-1];};
void print() {}
template <class H,class... T>
void print(H&& h, T&&... t){cout<<h<<" \n"[sizeof...(t)==0];print(forward<T>(t)...);}
#define debug(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << "\n"
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
typedef struct {
ll v;
ll v2;
ll len;
} S;
using F = ll;
ll ID = INF+1;
S op(S a, S b){
return {a.v + b.v, a.v2 + b.v2, a.len + b.len};
}
S e(){
return {0,0,0};
}
S mapping(F f, S x){
return {x.v + x.len * f, x.v2 + 2 * f * x.v + x.len * f * f, x.len};
}
F composition(F f, F g){
return f + g;
}
F id(){
return 0;
}
void solve(){
ll N;
cin >> N;
vector<S> A(N);
rep(i,0,N){
ll tmp;
cin >> tmp;
A[i] = {tmp, tmp*tmp, 1};
}
lazy_segtree<S, op, e, F, mapping, composition, id> sg(A);
ll Q;
cin >> Q;
while(Q--){
ll q;
cin >> q;
if(q == 1){
ll l,r,x;
cin >> l >> r >> x;
l--; r--;
sg.apply(l, r+1, x);
}else{
ll l,r;
cin >> l >> r;
l--; r--;
print(sg.prod(l, r+1).v2);
}
}
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0