結果
| 問題 |
No.937 Ultra Sword
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-10-03 11:58:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 19 ms / 3,000 ms |
| コード長 | 17,267 bytes |
| コンパイル時間 | 2,507 ms |
| コンパイル使用メモリ | 258,084 KB |
| 最終ジャッジ日時 | 2025-01-15 01:59:15 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 47 |
ソースコード
#line 1 "other/tmp.cpp"
#include <bits/extc++.h>
#if __has_include(<bit>)
#include <bit>
#endif
#line 7 "Library/alias.hpp"
namespace workspace {
constexpr char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using i64 = int_least64_t;
using i128 = __int128_t;
using u32 = uint_least32_t;
using u64 = uint_least64_t;
using u128 = __uint128_t;
template <class T, class Comp = less<T>>
using priority_queue = std::priority_queue<T, vector<T>, Comp>;
template <class T> using stack = std::stack<T, vector<T>>;
} // namespace workspace
#line 5 "Library/config.hpp"
namespace config {
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed() {
using namespace std::chrono;
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup() {
using namespace std;
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
#ifdef _buffer_check
atexit([] {
char bufc;
if (cin >> bufc)
cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
unsigned cases(), caseid = 1;
template <class F> void loop(F main) {
for (const unsigned total = cases(); caseid <= total; ++caseid) main();
}
} // namespace config
#line 2 "Library/option.hpp"
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 2 "Library/utils/binary_search.hpp"
#if __cplusplus >= 201703L
#include <cassert>
#include <cmath>
#include <vector>
namespace workspace {
// binary search on a discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,
iter_type>
binary_search(iter_type ok, iter_type ng, pred_type pred) {
assert(ok != ng);
std::make_signed_t<decltype(ng - ok)> dist(ng - ok);
while (1 < dist || dist < -1) {
iter_type mid(ok + dist / 2);
if (pred(mid))
ok = mid, dist -= dist / 2;
else
ng = mid, dist /= 2;
}
return ok;
}
// parallel binary search on each discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<iter_type>>,
std::vector<bool>>,
std::vector<iter_type>>
binary_search(std::vector<std::pair<iter_type, iter_type>> ends,
pred_type pred) {
std::vector<iter_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
iter_type mid(ok + (ng - ok) / 2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
// binary search on a real number interval.
template <class real_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,
real_type>
binary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {
assert(ok != ng);
while (ok + eps < ng || ng + eps < ok) {
real_type mid{(ok + ng) / 2};
(pred(mid) ? ok : ng) = mid;
}
return ok;
}
// parallel binary search on each real interval.
template <class real_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<real_type>>,
std::vector<bool>>,
std::vector<real_type>>
binary_search(std::vector<std::pair<real_type, real_type>> ends,
const real_type eps, pred_type pred) {
std::vector<real_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
if (ok + eps < ng || ng + eps < ok) {
all_found = false;
mids[i] = (ok + ng) / 2;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
} // namespace workspace
#endif
#line 3 "Library/utils/casefmt.hpp"
namespace workspace {
std::ostream &casefmt(std::ostream& os) { return os << "Case #" << config::caseid << ": "; }
} // namespace workspace
#line 3 "Library/utils/chval.hpp"
namespace workspace {
template <class T, class Comp = std::less<T>>
bool chle(T &x, const T &y, Comp comp = Comp()) {
return comp(y, x) ? x = y, true : false;
}
template <class T, class Comp = std::less<T>>
bool chge(T &x, const T &y, Comp comp = Comp()) {
return comp(x, y) ? x = y, true : false;
}
} // namespace workspace
#line 5 "Library/utils/coordinate_compression.hpp"
template <class T> class coordinate_compression {
std::vector<T> uniquely;
std::vector<size_t> compressed;
public:
coordinate_compression(const std::vector<T> &raw)
: uniquely(raw), compressed(raw.size()) {
std::sort(uniquely.begin(), uniquely.end());
uniquely.erase(std::unique(uniquely.begin(), uniquely.end()),
uniquely.end());
for (size_t i = 0; i != size(); ++i)
compressed[i] =
std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) -
uniquely.begin();
}
size_t operator[](const size_t idx) const {
assert(idx < size());
return compressed[idx];
}
size_t size() const { return compressed.size(); }
size_t count() const { return uniquely.size(); }
T value(const size_t ord) const {
assert(ord < count());
return uniquely[ord];
}
size_t order(const T &value) const {
return std::lower_bound(uniquely.begin(), uniquely.end(), value) -
uniquely.begin();
}
auto begin() { return compressed.begin(); }
auto end() { return compressed.end(); }
auto rbegin() { return compressed.rbegin(); }
auto rend() { return compressed.rend(); }
};
#line 3 "Library/utils/fixed_point.hpp"
namespace workspace {
// specify the return type of lambda.
template <class lambda_type> class fixed_point {
lambda_type func;
public:
fixed_point(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const {
return func(*this, std::forward<Args>(args)...);
}
};
} // namespace workspace
#line 6 "Library/utils/hash.hpp"
#line 3 "Library/utils/sfinae.hpp"
#include <type_traits>
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container&>()))>::type;
template <class T, class = int> struct mapped_of {
using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
typename std::pair<int, typename T::mapped_type>::first_type> {
using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;
template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
T, typename std::enable_if<std::is_integral<T>::value>::type>
: std::true_type {};
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#if __cplusplus >= 201402
template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;
#endif
template <typename T, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {
using type = uint_least64_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
using type = __uint128_t;
};
#line 8 "Library/utils/hash.hpp"
namespace workspace {
template <class T, class = void> struct hash : std::hash<T> {};
#if __cplusplus >= 201703L
template <class Unique_bits_type>
struct hash<Unique_bits_type,
enable_if_trait_type<Unique_bits_type,
std::has_unique_object_representations>> {
size_t operator()(uint64_t x) const {
static const uint64_t m = std::random_device{}();
x ^= x >> 23;
x ^= m;
x ^= x >> 47;
return x - (x >> 32);
}
};
#endif
template <class Key> size_t hash_combine(const size_t &seed, const Key &key) {
return seed ^
(hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);
}
template <class T1, class T2> struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2> &pair) const {
return hash_combine(hash<T1>()(pair.first), pair.second);
}
};
template <class... T> class hash<std::tuple<T...>> {
template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>
struct tuple_hash {
static uint64_t apply(const Tuple &t) {
return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),
std::get<index>(t));
}
};
template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {
static uint64_t apply(const Tuple &t) { return 0; }
};
public:
uint64_t operator()(const std::tuple<T...> &t) const {
return tuple_hash<std::tuple<T...>>::apply(t);
}
};
template <class hash_table> struct hash_table_wrapper : hash_table {
using key_type = typename hash_table::key_type;
size_t count(const key_type &key) const {
return hash_table::find(key) != hash_table::end();
}
template <class... Args> auto emplace(Args &&... args) {
return hash_table::insert(typename hash_table::value_type(args...));
}
};
template <class Key, class Mapped = __gnu_pbds::null_type>
using cc_hash_table =
hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped = __gnu_pbds::null_type>
using gp_hash_table =
hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped>
using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;
template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;
} // namespace workspace
#line 2 "Library/utils/make_vector.hpp"
#if __cplusplus >= 201703L
#include <vector>
namespace workspace {
template <typename T, size_t N>
constexpr auto make_vector(size_t* sizes, T const& init = T()) {
if constexpr (N)
return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));
else
return init;
}
template <typename T, size_t N>
constexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {
return make_vector<T, N>((size_t*)sizes, init);
}
} // namespace workspace
#endif
#line 3 "Library/utils/random_number_generator.hpp"
template <typename num_type> class random_number_generator {
typename std::conditional<std::is_integral<num_type>::value,
std::uniform_int_distribution<num_type>,
std::uniform_real_distribution<num_type>>::type
unif;
std::mt19937 engine;
public:
random_number_generator(num_type min = std::numeric_limits<num_type>::min(),
num_type max = std::numeric_limits<num_type>::max())
: unif(min, max), engine(std::random_device{}()) {}
num_type min() const { return unif.min(); }
num_type max() const { return unif.max(); }
// generate a random number in [min(), max()].
num_type operator()() { return unif(engine); }
};
#line 3 "Library/utils/read.hpp"
namespace workspace {
// read with std::cin.
template <class T = void>
struct read
{
typename std::remove_const<T>::type value;
template <class... types>
read(types... args) : value(args...) { std::cin >> value; }
operator T() const { return value; }
};
template <>
struct read<void>
{
template <class T>
operator T() const { T value; std::cin >> value; return value; }
};
} // namespace workspace
#line 4 "Library/utils/stream.hpp"
#line 6 "Library/utils/stream.hpp"
namespace std {
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
return os << p.first << ' ' << p.second;
}
template <class tuple_t, size_t index> struct tuple_is {
static istream &apply(istream &is, tuple_t &t) {
tuple_is<tuple_t, index - 1>::apply(is, t);
return is >> get<index>(t);
}
};
template <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {
static istream &apply(istream &is, tuple_t &t) { return is; }
};
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) {
return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,
t);
}
template <class tuple_t, size_t index> struct tuple_os {
static ostream &apply(ostream &os, const tuple_t &t) {
tuple_os<tuple_t, index - 1>::apply(os, t);
return os << ' ' << get<index>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, 0> {
static ostream &apply(ostream &os, const tuple_t &t) {
return os << get<0>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {
static ostream &apply(ostream &os, const tuple_t &t) { return os; }
};
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {
return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,
t);
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
istream &>::type
operator>>(istream &is, Container &cont) {
for (auto &&e : cont) is >> e;
return is;
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
ostream &>::type
operator<<(ostream &os, const Container &cont) {
bool head = true;
for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;
return os;
}
} // namespace std
#line 4 "Library/utils/trinary_search.hpp"
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type first, iter_type last, comp_type comp)
{
assert(first < last);
intmax_t dist(last - first);
while(dist > 2)
{
iter_type left(first + dist / 3), right(first + dist * 2 / 3);
if(comp(left, right)) last = right, dist = dist * 2 / 3;
else first = left, dist -= dist / 3;
}
if(dist > 1 && comp(first + 1, first)) ++first;
return first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double first, long double last, const long double eps, comp_type comp)
{
assert(first < last);
while(last - first > eps)
{
long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};
if(comp(left, right)) last = right;
else first = left;
}
return first;
}
#line 2 "Library/utils/wrapper.hpp"
template <class Container> class reversed {
Container &ref, copy;
public:
reversed(Container &ref) : ref(ref) {}
reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}
auto begin() const { return ref.rbegin(); }
auto end() const { return ref.rend(); }
};
#line 9 "other/tmp.cpp"
namespace workspace {
void main();
}
int main() { config::loop(workspace::main); }
unsigned config::cases() {
// return -1; // unspecified
// int t; std::cin >> t; return t; // given
return 1;
}
#line 2 "Library/algebra/xor_elimination.hpp"
template <class expr>
struct xor_elimination
{
std::vector<expr> base;
bool add(expr e)
{
for(const expr &b : base) if((b ^ e) < e) e ^= b;
if(e) base.emplace_back(e);
return e;
}
size_t dim() const { return base.size(); }
};
#line 22 "other/tmp.cpp"
namespace workspace {
void main() {
// start here!
int n;
cin >> n;
int g = 0;
const int all = 1 << 17;
vector<i64> dp(all);
i64 sum = 0;
for (auto i = 0; i != n; ++i) {
int a;
cin >> a;
dp[a] += a;
sum += a;
while (1) {
int alz = __countl_zero(a);
int glz = __countl_zero(g);
if (alz > glz) swap(a, g), swap(alz, glz);
if (!g) break;
a ^= g << (glz - alz);
}
g = a;
}
bitset<all> bs;
bs[0] = 1;
for (int mg = g; mg < all; mg <<= 1) {
for (auto e = 0; e != all; ++e) {
if (bs[e]) bs[e ^ mg] = 1;
}
}
{
vector<bool> chkd(all);
for (auto d = 2; d != all; ++d) {
if (chkd[d]) continue;
for (auto m = (all - 1) / d; m; m -= 1) {
chkd[m * d] = true;
dp[m] += dp[m * d];
}
}
}
i64 ans = sum + 1;
for (auto s = 1; s != all; ++s) {
if (bs[s]) {
chle(ans, sum - dp[s] + dp[s] / s);
}
}
cout << ans << eol;
}
}
jell