結果

問題 No.1248 Kth Sum
ユーザー ThistleThistle
提出日時 2020-10-03 15:50:28
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 394 ms / 2,000 ms
コード長 13,965 bytes
コンパイル時間 3,238 ms
コンパイル使用メモリ 162,036 KB
実行使用メモリ 85,372 KB
最終ジャッジ日時 2024-07-18 04:31:11
合計ジャッジ時間 11,211 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
//[l,r]
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}
//[l,r)
T b(int l, int r) {
return a(l, r - 1);
}
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
};
class mint {
public:ll v;
mint(ll v = 0) { s(v % mod + mod); }
constexpr static int mod = Mod;// (ll)1e9 + 7;
constexpr static int fn_ = (ll)2e6 + 5;
static mint fact[fn_], comp[fn_];
mint pow(int x) const {
mint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline mint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline mint inv()const { return pow(mod - 2); }
inline mint operator-()const { return mint() - *this; }
inline mint& operator+=(const mint b) { return s(v + b.v); }
inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
inline mint operator+(const mint b) const { return mint(v) += b; }
inline mint operator-(const mint b) const { return mint(v) -= b; }
inline mint operator*(const mint b) const { return mint(v) *= b; }
inline mint operator/(const mint b) const { return mint(v) /= b; }
friend ostream& operator<<(ostream& os, const mint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, mint& m) {
int x; is >> x; m = mint(x);
return is;
}
bool operator<(const mint& r)const { return v < r.v; }
bool operator>(const mint& r)const { return v > r.v; }
bool operator<=(const mint& r)const { return v <= r.v; }
bool operator>=(const mint& r)const { return v >= r.v; }
bool operator==(const mint& r)const { return v == r.v; }
bool operator!=(const mint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
mint comb(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
if (k > * this - k) k = *this - k;
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
mint perm(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
}
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
//--------------------------------------------------------------
template<class T>
class LazySegmentTree {
protected:
using UPF = function<void(T&, const int&)>;
using QRF = function<void(T&, const T)>;
using F = function<bool(T a)>;
using ll = long long;
int n, rr;
vector<T>dat;
vector<int>len;
LazySegmentTree() {}
LazySegmentTree(int size) { init(size); }
LazySegmentTree(vector<T>& v) {
init(v);
}
virtual ~LazySegmentTree() {}
virtual void eval(const T& par, T& a, const int& al) = 0;
virtual void fold(T& par, const int& pl) = 0;
virtual T proc(const T& a, const int& al, const T& b, const int& bl) = 0;
public:
void init(int size) {
n = size, rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
len.assign(2 * rr - 1, 0);
for (int i = 0; i < n; i++) {
len[i + rr - 1] = 1;
dat[i + rr - 1] = T();
}
for (int i = rr - 2; i >= 0; i--) {
len[i] = len[i * 2 + 1] + len[i * 2 + 2];
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
}
void init(vector<T>& v) {
n = (int)v.size(), rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
len.assign(2 * rr - 1, 0);
for (int i = 0; i < n; i++) {
dat[i + rr - 1] = v[i];
len[i + rr - 1] = 1;
}
for (int i = rr - 2; i >= 0; i--) {
len[i] = len[i * 2 + 1] + len[i * 2 + 2];
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
}
//one point update
void set(int at, T x) {
update(0, at, at + 1, 0, rr, [x](T& a) {a = x; });
}
void upd(int a, int b, UPF func) {
upd(0, a, b, 0, rr, func);
}
T qry(int a, int b) {
return qry(0, a, b, 0, rr);
}
T get0() {
return dat[0];
}
//func([a,i))==true, func([a,i+1))==false
int lb(int a, int b, F func) {
T e = T();
int lgt = 0;
return lb(0, a, b, 0, rr, func, e, lgt);
}
//func([i,b))==true, func([i-1,b))==false
int ub(int a, int b, F func) {
T e = T();
int lgt = 0;
return ub(0, a, b, 0, rr, func, e, lgt);
}
private:
void upd(int i, const int& a, const int& b, int l, int r, UPF& func) {
if (b <= l || r <= a) return;
if (a <= l && r <= b) {
func(dat[i], len[i]);
return;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
upd(i * 2 + 1, a, b, l, (l + r) / 2, func);
upd(i * 2 + 2, a, b, (l + r) / 2, r, func);
dat[i] = proc(dat[i * 2 + 1], len[i * 2 + 1], dat[i * 2 + 2], len[i * 2 + 2]);
}
T qry(int i, const int& a, const int& b, int l, int r) {
if (b <= l || r <= a) return T();
if (a <= l && r <= b) return dat[i];
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
return proc(qry(i * 2 + 1, a, b, l, (l + r) / 2), len[i * 2 + 1],
qry(i * 2 + 2, a, b, (l + r) / 2, r), len[i * 2 + 2]);
}
int lb(int i, int a, int b, int l, int r, F& func, T& wa, int& lgt) {
if (b <= l || r <= a) return b;
if (a <= l && r <= b) {
if (func(proc(wa, lgt, dat[i], len[i]))) {
wa = proc(wa, lgt, dat[i], len[i]);
lgt += len[i];
return b;
}
if (r - l == 1) return l;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
int tmp = lb(i * 2 + 1, a, b, l, (l + r) / 2, func, wa, lgt);
if (tmp < b) return tmp;
return lb(i * 2 + 2, a, b, (l + r) / 2, r, func, wa, lgt);
}
int ub(int i, int a, int b, int l, int r, F& func, T& wa, int& lgt) {
if (b <= l || r <= a) return a;
if (a <= l && r <= b) {
if (func(proc(dat[i], len[i], wa, lgt))) {
wa = proc(dat[i], len[i], wa, lgt);
lgt += len[i];
return a;
}
if (r - l == 1) return r;
}
eval(dat[i], dat[i * 2 + 1], len[i * 2 + 1]);
eval(dat[i], dat[i * 2 + 2], len[i * 2 + 2]);
fold(dat[i], len[i]);
int tmp = ub(i * 2 + 2, a, b, (l + r) / 2, r, func, wa, lgt);
if (tmp > a) return tmp;
return ub(i * 2 + 1, a, b, l, (l + r) / 2, func, wa, lgt);
}
};
template<class T>
class Segtree :public LazySegmentTree<T> {
using Base = LazySegmentTree<T>;
public:
Segtree() {}
Segtree(int size) {
init(size);
}
Segtree(vector<ll>& v) {
init(v);
}
void init(int size) {
Base::init(size);
}
void init(vector<ll>& v) {
vector<T>r(v.size());
for (int i = 0; i < v.size(); i++) r[i] = v[i];
Base::init(r);
}
void update(int a, int b, ll x) {
Base::upd(a, b, [x](T& dat, const int& len) {
dat += x;
});
}
ll query(int a, int b) {
return Base::qry(a, b);
}
ll get0() {
return Base::get0();
}
private:
void eval(const T& par, T& a, const int& al)override {
}
void fold(T& par, const int& pl) override {
}
T proc(const T& a, const int& al, const T& b, const int& bl)override {
return a + b;
}
};
template<typename T>
class sptable {
using F = function<T(T, T)>;
vector<T>v;
vector<vector<T>>dat;
vector<int>log;
F func;
public:
sptable(F func) :func(func) {}
sptable(vector<T>a, F func) :func(func) {
init(a);
}
void init(vector<T>a) {
v = a;
int n = a.size();
log.assign(n + 1, 0);
for (int i = 1; i <= n; i++) log[i] = log[i >> 1] + 1;
dat.assign(log[n], vector<T>(n));
for (int i = 0; i < n; i++) dat[0][i] = i;
for (int i = 1; i < log[n]; i++) {
for (int j = 0; j < n - (1 << i) + 1; j++) {
int c = dat[i - 1][j];
int d = dat[i - 1][j + (1 << (i - 1))];
dat[i][j] = (func(a[c], a[d]) == a[c] ? c : d);
}
}
}
int idx_get(int l, int r) {
int pos = log[r - l] - 1;
int c = dat[pos][l];
int d = dat[pos][r - (1 << pos)];
return (func(v[c], v[d]) == v[c] ? c : d);
}
T get(int l, int r) {
return v[idx_get(l, r)];
}
T operator()(int l, int r) const { return get(l, r); }
};
int n, k;
vi a;
signed main() {
cin >> n >> k;
readv(a, n);
vi b = a; crdcomp(b);
Segtree<ll> cnt(siz(b)), val(siz(b));
sptable<ll> spt(a, [](ll a, ll b) {return min(a, b); });
ll ans = a[k - 1];
if (k == 1) {
cout << ans << endl;
return 0;
}
for (int i = n - 1; i >= k - 1; i--) {
int r = (i + k - 2) / (k - 1);
//ceil(i/(k-1))
int tmp = getidx(b, a[i]);
if (r - 1 > n - i || r * k - 1 >= n) {
cnt.update(tmp, tmp + 1, 1);
val.update(tmp, tmp + 1, a[i]);
continue;
}
if (r == 1) {
break;
}
int pos = cnt.lb(0, siz(b), [&r](ll a) {return a < r - 1; }) + 1;
ll sum = a[i] + val.query(0, pos) - (cnt.query(0, pos) - (r - 1)) * b[pos - 1];
if (b[pos - 1] < spt.get(r * k - 1, n)) {
sum -= b[pos - 1];
sum += spt.get(r * k - 1, n);
}
chmin(ans, sum);
cnt.update(tmp, tmp + 1, 1);
val.update(tmp, tmp + 1, a[i]);
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0