結果

問題 No.1222 -101
ユーザー tokusakurai
提出日時 2020-10-03 18:53:35
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 362 ms / 2,000 ms
コード長 6,688 bytes
コンパイル時間 2,468 ms
コンパイル使用メモリ 216,688 KB
最終ジャッジ日時 2025-01-15 02:11:52
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define elif else if
#define sp(x) fixed << setprecision(x)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
const double pi = acos(-1.0);
const double EPS = 1e-10;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};
template<int mod>
struct Mod_Int{
ll x;
Mod_Int() : x(0) {}
Mod_Int(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
Mod_Int &operator += (const Mod_Int &p){
x = (x + p.x) % mod;
return *this;
}
Mod_Int &operator -= (const Mod_Int &p){
x = (x + mod - p.x) % mod;
return *this;
}
Mod_Int &operator *= (const Mod_Int &p){
x = (x * p.x) % mod;
return *this;
}
Mod_Int &operator /= (const Mod_Int &p){
*this *= p.inverse();
return *this;
}
Mod_Int &operator ++ () {return *this += Mod_Int(1);}
Mod_Int operator ++ (int){
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator -- () {return *this -= Mod_Int(1);}
Mod_Int operator -- (int){
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator - () const {return Mod_Int(-x);}
Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}
Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}
Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}
Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}
bool operator == (const Mod_Int &p) const {return x == p.x;}
bool operator != (const Mod_Int &p) const {return x != p.x;}
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod-2);
}
Mod_Int pow(ll k) const{
Mod_Int now = *this, ret = 1;
while(k){
if(k&1) ret *= now;
now *= now, k >>= 1;
}
return ret;
}
friend ostream &operator << (ostream &os, const Mod_Int &p){
return os << p.x;
}
friend istream &operator >> (istream &is, Mod_Int &p){
ll a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template<typename Monoid, typename Operator_Monoid>
struct Lazy_Segment_Tree{
vector<Monoid> seg;
vector<Operator_Monoid> lazy;
const Monoid e1;
const Operator_Monoid e2;
const int n;
Monoid f(const Monoid &a, const Monoid &b) const{
return {a.first+b.first, a.second+b.second};
}
Monoid g(const Monoid &a, const Operator_Monoid &b) const{
return {a.first+b*a.second, a.second};
}
Operator_Monoid h(const Operator_Monoid &a, const Operator_Monoid &b) const{
return a+b;
}
Lazy_Segment_Tree(const vector<Monoid> &v, const Monoid &e1, const Operator_Monoid &e2)
: e1(e1), e2(e2), n(1<<(32-__builtin_clz(sz(v)-1))){
seg.assign(2*n, e1), lazy.assign(2*n, e2);
copy(all(v), seg.begin()+n);
rep3(i, n-1, 1) seg[i] = f(seg[2*i], seg[2*i+1]);
}
void eval(int i, int l, int r){
if(lazy[i] != e2){
seg[i] = g(seg[i], lazy[i]);
if(r-l > 1){
lazy[2*i] = h(lazy[2*i] ,lazy[i]);
lazy[2*i+1] = h(lazy[2*i+1], lazy[i]);
}
lazy[i] = e2;
}
}
void apply(int a, int b, const Operator_Monoid &x, int i, int l, int r){
eval(i, l, r);
if(a >= r || b <= l) return;
if(a <= l && r <= b){
lazy[i] = h(lazy[i], x);
eval(i, l, r);
}
else{
apply(a, b, x, 2*i, l, (l+r)/2);
apply(a, b, x, 2*i+1, (l+r)/2, r);
seg[i] = f(seg[2*i], seg[2*i+1]);
}
}
void apply(int a, int b, const Operator_Monoid &x) {apply(a, b, x, 1, 0, n);}
Monoid query(int a, int b, int i, int l, int r){
eval(i, l, r);
if(a >= r || b <= l) return e1;
if(a <= l && r <= b) return seg[i];
Monoid vl = query(a, b, 2*i, l, (l+r)/2);
Monoid vr = query(a, b, 2*i+1, (l+r)/2, r);
return f(vl, vr);
}
Monoid query(int a, int b) {return query(a, b, 1, 0, n);}
void update(int i, int l, int r){
seg[i] = g(seg[i], lazy[i]);
if(r-l > 1){
lazy[2*i] = h(lazy[2*i], lazy[i]);
lazy[2*i+1] = h(lazy[2*i+1], lazy[i]);
update(2*i, l, (l+r)/2);
update(2*i+1, (l+r)/2, r);
}
lazy[i] = e2;
}
void update() {update(1, 0, n);}
Monoid operator [] (int i) const {return seg[n+i];}
};
int main(){
int N, M;
cin >> N >> M;
vector<pii> tmp;
vector<int> rs(N, 0);
rep(i, M){
int l, r, p; cin >> l >> r >> p; l--;
if(p == 0) tmp.eb(r, l);
else chmax(rs[l], r);
}
vector<bool> zero(N, true);
int ptr = 0;
rep(i, N){
chmax(ptr, rs[i]);
if(ptr > i) zero[i] = false;
}
vector<int> rem;
rep(i, N){
if(zero[i]) rem.pb(i);
}
int n = sz(rem);
mint ans = mint(2).pow(N-n-(M-sz(tmp)));
for(auto &e: tmp){
e.first = lower_bound(all(rem), e.first)-rem.begin();
e.second = lower_bound(all(rem), e.second)-rem.begin();
if(e.first == e.second) {cout << 0 << endl; return 0;}
}
sort(all(tmp));
vector<int> query(n, -1);
ptr = -1;
for(auto &e: tmp){
if(chmax(ptr, e.second)) query[e.second] = e.first;
}
vector<pair<mint, mint>> v(n+1);
rep(i, n+1){
v[i].first = 0;
if(i == 0) v[i].second = 1, v[i].first = 1;
else v[i].second = v[i-1].second*2;
}
Lazy_Segment_Tree<pair<mint, mint>, mint> seg(v, {0, 0}, 0);
mint inv = mint(1)/mint(2);
mint pw[n+1];
pw[0] = 1;
rep(i, n) pw[i+1] = pw[i]*inv;
rep(i, n){
mint tmp = seg.query(i, i+1).first;
if(query[i] == -1) seg.apply(i+1, i+2, tmp*3*pw[i+1]);
else seg.apply(i+1, query[i]+1, tmp*pw[i+1]);
}
ans *= seg.query(n, n+1).first;
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0