結果
| 問題 |
No.36 素数が嫌い!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-10-06 22:39:41 |
| 言語 | Haskell (9.10.1) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,312 bytes |
| コンパイル時間 | 151 ms |
| コンパイル使用メモリ | 149,504 KB |
| 最終ジャッジ日時 | 2024-11-14 23:51:12 |
| 合計ジャッジ時間 | 601 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:5:1: error: [GHC-87110]
Could not load module ‘GHC.Integer.GMP.Internals’.
It is a member of the hidden package ‘integer-gmp-1.1’.
Use -v to see a list of the files searched for.
|
5 | import qualified GHC.Integer.GMP.Internals as GMP
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ソースコード
{-# LANGUAGE BangPatterns #-}
import Control.Monad
import Data.Bool
import Data.Bits
import qualified GHC.Integer.GMP.Internals as GMP
import qualified Data.Array.ST as ArrST
import qualified Data.Array.Unboxed as ArrU
thirdRoot :: Float -> Float
thirdRoot n = fst $ until (uncurry(==)) (\(_, x0) -> (x0,((n - 1.0) * x0 + 3.0 / x0 ** (n - 1.0)) / n)) (3.0, 3.0 / n)
sieveUA :: Int -> ArrU.UArray Int Bool
sieveUA top = ArrST.runSTUArray $ do
let m = (top-1) `div` 2
r = floor . sqrt $ fromIntegral top + 1
sieve <- ArrST.newArray (1,m) True
forM_ [1..r `div` 2] $ \i -> do
isPrime <- ArrST.readArray sieve i
when isPrime $ do
forM_ [2*i*(i+1), 2*i*(i+2)+1..m] $ \j -> do
ArrST.writeArray sieve j False
return sieve
primesToUA :: Int -> [Int]
primesToUA top = 2 : [i*2+1 | (i,True) <- ArrU.assocs $ sieveUA top]
main :: IO ()
main = readLn >>= putStrLn . solver
solver :: Int -> String
solver n = bool "NO" "YES" $ func1 n
func1 :: Int -> Bool
func1 n = iter n 0 ps
where
ps = primesToUA 40000
iter res p []
| p >= 3 || (p == 2 && millerRabin p) = True
| p == 1 = not $ millerRabin res
| res >= 10 ^ 12 = let xxx = round $ thirdRoot $ fromIntegral res
in if even xxx then millerRabin $ xxx - 1 else millerRabin xxx
| otherwise = False
iter i j (l:ls)
| i < 2 = j >= 3
| j >= 3 = True
| i `mod` l == 0 = iter (func2 i l) (j + func3 i l) ls
| otherwise = iter i j ls
func2 :: Int -> Int -> Int
func2 n mo
| n `mod` mo == 0 = func2 (n `div` mo) mo
| otherwise = n
func3 :: Int -> Int -> Int
func3 n mo = iter n mo 0
where
iter i j k
| i `mod` j == 0 = iter (i `div` j) j (k + 1)
| otherwise = k
millerRabin :: Int -> Bool
millerRabin k
| k <= 3 = k == 2 || k == 3
| even k = False
| otherwise = mr k
where
mr :: Int -> Bool
mr n
| n < 2047 = loop [2]
| n < 1373653 = loop [2,3]
| n < 9080191 = loop [31,73]
| n < 25326001 = loop [2,3,5]
| n < 4759123141 = loop [2,7,61]
| n < 1122004669633 = loop [2,13,23,1662803]
| n < 2152302898747 = loop [2,3,5,7,11]
| n < 3474749660383 = loop [2,3,5,7,11,13]
| n < 341550071728321 = loop [2,3,5,7,11,13,17]
| otherwise = loop [2,325,9375,28178,450775,9780504,1795265022]
where
powModInt :: Int -> Int -> Int -> Int
powModInt !a !n !mo = fI $ GMP.powModInteger (fi a) (fi n) (fi mo)
!m = n - 1
!s = ctz m
!d = m .>>. s
loop :: [Int] -> Bool
loop [] = True
loop (a:as)
| powModInt a d n /= 1 && allok = False
| otherwise = loop as
where allok = all (\r -> (powModInt a ((1 .<<. r) * d) n) /= m) [0..(s - 1)]
infixl 8 .<<., .>>.
(.<<.) :: Bits b => b -> Int -> b
(.<<.) = unsafeShiftL
{-# INLINE (.<<.) #-}
(.>>.) :: Bits b => b -> Int -> b
(.>>.) = unsafeShiftR
{-# INLINE (.>>.) #-}
fi :: Int -> Integer
fi = fromIntegral
{-# INLINE fi #-}
fI :: Integer -> Int
fI = fromInteger
{-# INLINE fI #-}
ctz :: FiniteBits fb => fb -> Int
ctz = countTrailingZeros
{-# INLINE ctz #-}