結果

問題 No.749 クエリ全部盛り
ユーザー 👑 NachiaNachia
提出日時 2020-10-07 22:57:30
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 744 ms / 3,000 ms
コード長 3,625 bytes
コンパイル時間 1,883 ms
コンパイル使用メモリ 175,528 KB
実行使用メモリ 172,632 KB
最終ジャッジ日時 2024-07-20 04:18:50
合計ジャッジ時間 7,417 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using LL = long long;
using ULL = unsigned long long;
#define rep(i,n) for(int i=0; i<(n); i++)
template<
class S,
S(*op)(S a, S b),
S(*e)(),
class F,
S(*mapping)(F a, S b),
F(*composition)(F a, F b),
F(*id)()
>
struct lazy_segtree {
private:
struct Node { S v; F r; };
int N;
vector<Node> V;
void spread(int i) {
V[i].v = mapping(V[i].r, V[i].v);
if (i < N) {
V[i * 2].r = composition(V[i].r, V[i * 2].r);
V[i * 2 + 1].r = composition(V[i].r, V[i * 2 + 1].r);
}
V[i].r = id();
}
public:
lazy_segtree(int n) {
N = 1; while (N < n) N *= 2;
V.assign(N * 2, { e(),id() });
}
lazy_segtree(vector<S> A) {
N = 1; while (N < A.size()) N *= 2;
V.assign(N * 2, { e(),id() });
rep(i, A.size()) V[N + i].v = A[i];
for (int i = N - 1; i >= 1; i--)
V[i].v = op(V[i * 2].v, V[i * 2 + 1].v);
}
void set(int p, S v) {
p += N;
for (int d = N; d >= 1; d /= 2) spread(p / d);
V[p].v = v;
int z = 1;
while (p != 1) {
p /= 2; z *= 2;
spread(p * 2); spread(p * 2 + 1);
V[p].v = op(V[p * 2].v, V[p * 2 + 1].v);
}
}
S get(int p) {
p += N;
for (int d = N; d >= 1; d /= 2) spread(p / d);
return V[p].v;
}
void apply(int l, int r, F v, int a = 0, int b = 0, int i = -1) {
if (i == -1) { a = 0; b = N; i = 1; }
if (r <= a || b <= l) { spread(i); return; }
else if (l <= a && b <= r) { V[i].r = composition(v, V[i].r); spread(i); return; }
spread(i);
apply(l, r, v, a, (a + b) / 2, i * 2);
apply(l, r, v, (a + b) / 2, b, i * 2 + 1);
V[i].v = op(V[i * 2].v, V[i * 2 + 1].v);
}
S prod(int l, int r, int a = 0, int b = 0, int i = -1) {
if (i == -1) { a = 0; b = N; i = 1; }
if (r <= a || b <= l) return e();
spread(i);
if (l <= a && b <= r) return V[i].v;
S q1 = prod(l, r, a, (a + b) / 2, i * 2);
S q2 = prod(l, r, (a + b) / 2, b, i * 2 + 1);
q1 = op(q1, q2);
return q1;
}
};
const ULL M = 1000000007;
ULL FS[1000001];
struct S { ULL x, i, z; };
S op(S l, S r) { return { (l.x + r.x) % M, min(l.i,r.i), (l.z + r.z) % M }; }
S e() { return { 0, ~0ull, 0 }; }
struct F { ULL upd, mul, fib, add; };
S mapping(F f, S a) {
if (~f.upd) a.x = f.upd * a.z % M;
a.x = (a.x * f.mul) % M;
a.x = (a.x + f.fib * (FS[a.i + a.z] + M - FS[a.i])) % M;
a.x = (a.x + f.add * a.z) % M;
return a;
}
F composition(F f, F g) {
if (~f.upd) g = { f.upd,1,0,0 };
g.mul = (g.mul * f.mul) % M;
g.add = (g.add * f.mul + f.add) % M;
g.fib = (g.fib * f.mul + f.fib) % M;
return g;
}
F id() { return { ~0ull, 1, 0, 0 }; }
using RQ = lazy_segtree<S, op, e, F, mapping, composition, id>;
int main() {
int N, Q; cin >> N >> Q;
FS[0] = 0; FS[1] = 0; FS[2] = 1;
for (int i = 3; i <= N; i++) FS[i] = (FS[i - 1] + FS[i - 2]) % M;
rep(i, N) FS[i + 1] = (FS[i] + FS[i + 1]) % M;
vector<S> rqinit(N);
rep(i, N) rqinit[i] = { 0,ULL(i),1 };
RQ G(rqinit);
while (Q--) {
ULL q, l, r, k; cin >> q >> l >> r >> k; r++;
if (q == 0) { cout << (G.prod(l, r).x * k % M) << endl; }
if (q == 1) { G.apply(l, r, { k,1,0,0 }); }
if (q == 2) { G.apply(l, r, { ~0ull,1,0,k }); }
if (q == 3) { G.apply(l, r, { ~0ull,k,0,0 }); }
if (q == 4) { G.apply(l, r, { ~0ull,1,k,0 }); }
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0