結果
問題 | No.898 tri-βutree |
ユーザー |
![]() |
提出日時 | 2020-10-08 17:10:22 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 446 ms / 4,000 ms |
コード長 | 5,978 bytes |
コンパイル時間 | 2,461 ms |
コンパイル使用メモリ | 189,308 KB |
実行使用メモリ | 31,684 KB |
最終ジャッジ日時 | 2024-11-08 23:49:56 |
合計ジャッジ時間 | 11,453 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 21 |
ソースコード
#include <bits/stdc++.h>using namespace std;//#define int long longtypedef long long ll;typedef unsigned long long ul;typedef unsigned int ui;const ll mod = 1000000007;const ll INF = mod * mod;const int INF_N = 1e+9;typedef pair<int, int> P;#define rep(i,n) for(int i=0;i<n;i++)#define per(i,n) for(int i=n-1;i>=0;i--)#define Rep(i,sta,n) for(int i=sta;i<n;i++)#define rep1(i,n) for(int i=1;i<=n;i++)#define per1(i,n) for(int i=n;i>=1;i--)#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)#define all(v) (v).begin(),(v).end()typedef pair<ll, ll> LP;typedef long double ld;typedef pair<ld, ld> LDP;const ld eps = 1e-12;const ld pi = acos(-1.0);//typedef vector<vector<ll>> mat;typedef vector<int> vec;//繰り返し二乗法ll mod_pow(ll a, ll n, ll m) {ll res = 1;while (n) {if (n & 1)res = res * a%m;a = a * a%m; n >>= 1;}return res;}struct modint {ll n;modint() :n(0) { ; }modint(ll m) :n(m) {if (n >= mod)n %= mod;else if (n < 0)n = (n%mod + mod) % mod;}operator int() { return n; }};bool operator==(modint a, modint b) { return a.n == b.n; }modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; }modint operator+(modint a, modint b) { return a += b; }modint operator-(modint a, modint b) { return a -= b; }modint operator*(modint a, modint b) { return a *= b; }modint operator^(modint a, int n) {if (n == 0)return modint(1);modint res = (a*a) ^ (n / 2);if (n % 2)res = res * a;return res;}//逆元(Eucledean algorithm)ll inv(ll a, ll p) {return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p);}modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }const int max_n = 1 << 18;modint fact[max_n], factinv[max_n];void init_f() {fact[0] = modint(1);for (int i = 0; i < max_n - 1; i++) {fact[i + 1] = fact[i] * modint(i + 1);}factinv[max_n - 1] = modint(1) / fact[max_n - 1];for (int i = max_n - 2; i >= 0; i--) {factinv[i] = factinv[i + 1] * modint(i + 1);}}modint comb(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[b] * factinv[a - b];}using mP = pair<modint, modint>;int dx[4] = { 0,1,0,-1 };int dy[4] = { 1,0,-1,0 };struct Edge {long long to;};using Graph = vector<vector<Edge>>;/* LCA(G, root): 木 G に対する根を root として Lowest Common Ancestor を求める構造体query(u,v): u と v の LCA を求める。計算量 O(logn)前処理: O(nlogn)時間, O(nlogn)空間*/struct LCA {vector<vector<int>> parent; // parent[k][u]:= u の 2^k 先の親vector<int> dist; // root からの距離LCA(const Graph &G, int root = 0) { init(G, root); }// 初期化void init(const Graph &G, int root = 0) {int V = G.size();int K = 1;while ((1 << K) < V) K++;parent.assign(K, vector<int>(V, -1));dist.assign(V, -1);dfs(G, root, -1, 0);for (int k = 0; k + 1 < K; k++) {for (int v = 0; v < V; v++) {if (parent[k][v] < 0) {parent[k + 1][v] = -1;} else {parent[k + 1][v] = parent[k][parent[k][v]];}}}}// 根からの距離と1つ先の頂点を求めるvoid dfs(const Graph &G, int v, int p, int d) {parent[0][v] = p;dist[v] = d;for (auto e : G[v]) {if (e.to != p) dfs(G, e.to, v, d + 1);}}int query(int u, int v) {if (dist[u] < dist[v]) swap(u, v); // u の方が深いとするint K = parent.size();// LCA までの距離を同じにするfor (int k = 0; k < K; k++) {if ((dist[u] - dist[v]) >> k & 1) {u = parent[k][u];}}// 二分探索で LCA を求めるif (u == v) return u;for (int k = K - 1; k >= 0; k--) {if (parent[k][u] != parent[k][v]) {u = parent[k][u];v = parent[k][v];}}return parent[0][u];}int get_dist(int u, int v) { return dist[u] + dist[v] - 2 * dist[query(u, v)]; }bool is_on_path(int u, int v, int a) { return get_dist(u, a) + get_dist(a, v) == get_dist(u, v); }};// 負の閉路がある場合は使用不可const int MAX_V=100005;struct edge {int to;ll cost;};// <最短距離, 頂点の番号>// using P = pair<int, int>;int V;vector<edge> G[MAX_V];ll d[MAX_V];int pre[MAX_V];void dijkstra(int s) {priority_queue<P, vector<P>, greater<P> > que;fill(d, d+V, INF);fill(pre, pre+V, -1);d[s] = 0;que.push(P(0, s));while (!que.empty()) {P p = que.top();que.pop();int v = p.second;if (d[v] < p.first) continue;for (int i=0; i<G[v].size(); ++i) {edge e = G[v][i];if (d[e.to] > d[v] + e.cost) {d[e.to] = d[v] + e.cost;pre[e.to] = v;que.push(P(d[e.to], e.to));}}}}void solve() {int n; cin >> n;V = n;Graph to(n);rep(i, n-1){int a, b, c; cin >> a >> b >> c;to[a].push_back({b});to[b].push_back({a});G[a].push_back({b, c});G[b].push_back({a, c});}LCA lca(to, 0);dijkstra(0);int q; cin >> q;rep(i, q){int x, y, z; cin >> x >> y >> z;cout << d[x] + d[y] + d[z] - d[lca.query(x, y)] - d[lca.query(y, z)] - d[lca.query(z, x)] << endl;}}signed main() {ios::sync_with_stdio(false);cin.tie(0);//cout << fixed << setprecision(10);//init_f();//init();//int t; cin >> t; rep(i, t)solve();solve();// stopreturn 0;}