結果

問題 No.898 tri-βutree
ユーザー kissshot7
提出日時 2020-10-08 17:10:22
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 446 ms / 4,000 ms
コード長 5,978 bytes
コンパイル時間 2,461 ms
コンパイル使用メモリ 189,308 KB
実行使用メモリ 31,684 KB
最終ジャッジ日時 2024-11-08 23:49:56
合計ジャッジ時間 11,453 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
const ll mod = 1000000007;
const ll INF = mod * mod;
const int INF_N = 1e+9;
typedef pair<int, int> P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
//typedef vector<vector<ll>> mat;
typedef vector<int> vec;
//
ll mod_pow(ll a, ll n, ll m) {
ll res = 1;
while (n) {
if (n & 1)res = res * a%m;
a = a * a%m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n%mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0)return modint(1);
modint res = (a*a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
//(Eucledean algorithm)
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 18;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
using mP = pair<modint, modint>;
int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };
struct Edge {
long long to;
};
using Graph = vector<vector<Edge>>;
/* LCA(G, root): G root Lowest Common Ancestor
query(u,v): u v LCA O(logn)
: O(nlogn), O(nlogn)
*/
struct LCA {
vector<vector<int>> parent; // parent[k][u]:= u 2^k
vector<int> dist; // root
LCA(const Graph &G, int root = 0) { init(G, root); }
//
void init(const Graph &G, int root = 0) {
int V = G.size();
int K = 1;
while ((1 << K) < V) K++;
parent.assign(K, vector<int>(V, -1));
dist.assign(V, -1);
dfs(G, root, -1, 0);
for (int k = 0; k + 1 < K; k++) {
for (int v = 0; v < V; v++) {
if (parent[k][v] < 0) {
parent[k + 1][v] = -1;
} else {
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
}
// 1
void dfs(const Graph &G, int v, int p, int d) {
parent[0][v] = p;
dist[v] = d;
for (auto e : G[v]) {
if (e.to != p) dfs(G, e.to, v, d + 1);
}
}
int query(int u, int v) {
if (dist[u] < dist[v]) swap(u, v); // u
int K = parent.size();
// LCA
for (int k = 0; k < K; k++) {
if ((dist[u] - dist[v]) >> k & 1) {
u = parent[k][u];
}
}
// LCA
if (u == v) return u;
for (int k = K - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
int get_dist(int u, int v) { return dist[u] + dist[v] - 2 * dist[query(u, v)]; }
bool is_on_path(int u, int v, int a) { return get_dist(u, a) + get_dist(a, v) == get_dist(u, v); }
};
// 使
const int MAX_V=100005;
struct edge {
int to;
ll cost;
};
// <, >
// using P = pair<int, int>;
int V;
vector<edge> G[MAX_V];
ll d[MAX_V];
int pre[MAX_V];
void dijkstra(int s) {
priority_queue<P, vector<P>, greater<P> > que;
fill(d, d+V, INF);
fill(pre, pre+V, -1);
d[s] = 0;
que.push(P(0, s));
while (!que.empty()) {
P p = que.top();
que.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (int i=0; i<G[v].size(); ++i) {
edge e = G[v][i];
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
pre[e.to] = v;
que.push(P(d[e.to], e.to));
}
}
}
}
void solve() {
int n; cin >> n;
V = n;
Graph to(n);
rep(i, n-1){
int a, b, c; cin >> a >> b >> c;
to[a].push_back({b});
to[b].push_back({a});
G[a].push_back({b, c});
G[b].push_back({a, c});
}
LCA lca(to, 0);
dijkstra(0);
int q; cin >> q;
rep(i, q){
int x, y, z; cin >> x >> y >> z;
cout << d[x] + d[y] + d[z] - d[lca.query(x, y)] - d[lca.query(y, z)] - d[lca.query(z, x)] << endl;
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//init();
//int t; cin >> t; rep(i, t)solve();
solve();
// stop
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0