結果

問題 No.1255 ハイレーツ・オブ・ボリビアン
ユーザー kimiyukikimiyuki
提出日時 2020-10-09 22:57:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,095 ms / 2,000 ms
コード長 3,769 bytes
コンパイル時間 2,145 ms
コンパイル使用メモリ 210,376 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-23 08:44:53
合計ジャッジ時間 7,128 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 3 ms
6,816 KB
testcase_03 AC 3 ms
6,816 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 6 ms
6,940 KB
testcase_06 AC 7 ms
6,940 KB
testcase_07 AC 7 ms
6,940 KB
testcase_08 AC 522 ms
6,944 KB
testcase_09 AC 547 ms
6,940 KB
testcase_10 AC 557 ms
6,944 KB
testcase_11 AC 541 ms
6,944 KB
testcase_12 AC 547 ms
6,940 KB
testcase_13 AC 47 ms
6,940 KB
testcase_14 AC 1,095 ms
6,940 KB
testcase_15 AC 516 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 5 "/home/user/Library/modulus/modinv.hpp"

inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
    assert (0 <= value and value < MOD);
    if (value == 0) return -1;
    int64_t a = value, b = MOD;
    int64_t x = 0, y = 1;
    for (int64_t u = 1, v = 0; a; ) {
        int64_t q = b / a;
        x -= q * u; std::swap(x, u);
        y -= q * v; std::swap(y, v);
        b -= q * a; std::swap(b, a);
    }
    if (not (value * x + MOD * y == b and b == 1)) return -1;
    if (x < 0) x += MOD;
    assert (0 <= x and x < MOD);
    return x;
}

inline int32_t modinv(int32_t x, int32_t MOD) {
    int32_t y = modinv_nocheck(x, MOD);
    assert (y != -1);
    return y;
}
#line 4 "/home/user/Library/modulus/modpow.hpp"

inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
    assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
    uint_fast64_t y = 1;
    for (; k; k >>= 1) {
        if (k & 1) (y *= x) %= MOD;
        (x *= x) %= MOD;
    }
    assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
    return y;
}
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 11 "/home/user/Library/modulus/modlog.hpp"

/**
 * @brief discrete log / 離散対数 (the baby-step giant-step, $O(\sqrt{m})$)
 * @description find the smallest $x \ge 0$ s.t. $g^x \equiv y \pmod{m}$
 * @param m is a positive integer
 * @note -1 if not found
 */
inline int modlog(int g, int y, int m) {
    assert (0 <= g and g < m);
    assert (0 <= y and y < m);
    if (m == 1) return 0;
    if (y == 1) return 0;
    if (g == 0 and y == 0) return 1;

    // meet-in-the-middle; let x = a \sqrt{m} + b
    int sqrt_m = sqrt(m) + 100;  // + 100 is required to bruteforce g^b for b < 100; this avoids problems with g != 0 and y = 0
    assert (sqrt_m >= 0);

    // baby-step: list (y, gy, g^2 y, ...) = (g^x, g^{x + 1}, g^{x + 2}, ...)
    std::unordered_map<int, int> table;
    int baby = 1;
    REP (b, sqrt_m) {
        if (baby == y) return b;
        table[(int64_t)baby * y % m] = b;
        baby = (int64_t)baby * g % m;
    }

    // giant-step: list (g^{sqrt(m)}, g^{2 sqrt(m)}, g^{3 sqrt(m)}, ...)
    int giant = 1;
    REP3 (a, 1, sqrt_m + 3) {
        giant = (int64_t)giant * baby % m;
        auto it = table.find(giant);
        if (it != table.end()) {
            int b = it->second;
            int x = (int64_t)a * sqrt_m - b;
            assert (x >= 0);
            return (modpow(g, x, m) == y ? x : -1);
        }
    }
    return -1;
}
#line 3 "main.cpp"
using namespace std;

int64_t solve(int64_t n) {
    if (n == 1) return 1;
    if (n == 2) return 2;
    assert (n >= 3);
    int64_t m = 2 * n - 1;
    auto f = [&](int64_t aq, int64_t ar, int64_t bq, int64_t br) {
        int64_t cq = aq + bq;
        int64_t cr = ar + br;
        if (cr >= m) {
            cr -= m;
            cq += 1;
        }
        return make_pair(cq, cr);
    };
    int64_t k = modlog(2, modinv(2, m), m) + 1;
    int64_t q0 = 0;
    int64_t r0 = 0;
    int64_t q1 = 0;
    int64_t r1 = 1;
    REP (i, 60) {
        if (k & (1ll << i)) {
            tie(q0, r0) = f(q0, r0, q1, r1);
        }
        tie(q1, r1) = f(q1, r1, q1, r1);
    }
    return k + q0;
}

// generated by online-judge-template-generator v4.7.1 (https://github.com/online-judge-tools/template-generator)
int main() {
    int t; cin >> t;
    while (t --) {
        int64_t n; cin >> n;
        cout << solve(n) << endl;
    }
    return 0;
}
0