結果

問題 No.1255 ハイレーツ・オブ・ボリビアン
ユーザー hamamu
提出日時 2020-10-09 23:11:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,810 bytes
コンパイル時間 2,079 ms
コンパイル使用メモリ 200,532 KB
最終ジャッジ日時 2025-01-15 05:45:34
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 2 WA * 12 TLE * 1
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

·
#include "bits/stdc++.h"
using namespace std;
using ll=long long;
using vll=vector< ll>;
using vvll=vector< vll>;
using vvvll=vector< vvll>;
using vvvvll=vector<vvvll>;
using dd=double;
using vdd=vector< dd>;
using vvdd=vector< vdd>;
using pll=pair<ll,ll>; using tll=tuple<ll,ll,ll>; using qll=tuple<ll,ll,ll,ll>;
constexpr ll INF = 1LL << 60;
struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast;
#define REPS(i, S, E) for (ll i = (S); i <= (E); i++)
#define REP(i, N) REPS(i, 0, (N)-1)
#define DEPS(i, S, E) for (ll i = (E); i >= (S); i--)
#define DEP(i, N) DEPS(i, 0, (N)-1)
#define rep(i, S, E) for (ll i = (S); i <= (E); i++)
#define dep(i, E, S) for (ll i = (E); i >= (S); i--)
#define each(e, v) for (auto&& e : v)
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; }
template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; }
template<class T> inline T MaxE(vector<T>&v,ll S,ll E){ T m=v[S]; rep(i,S,E)chmax(m,v[i]); return m; }
template<class T> inline T MinE(vector<T>&v,ll S,ll E){ T m=v[S]; rep(i,S,E)chmin(m,v[i]); return m; }
template<class T> inline T MaxE(vector<T> &v) { return MaxE(v,0,(ll)v.size()-1); }
template<class T> inline T MinE(vector<T> &v) { return MinE(v,0,(ll)v.size()-1); }
template<class T> inline T Sum(vector<T> &v,ll S,ll E){ T s=T(); rep(i,S,E)s+=v[i]; return s; }
template<class T> inline T Sum(vector<T> &v) { return Sum(v,0,v.size()-1); }
template<class T> inline ll sz(T &v){ return (ll)v.size(); }
inline ll CEIL(ll a,ll b){ return (a<0) ? -(-a/b) : (a+b-1)/b; }
inline ll FLOOR(ll a,ll b){ return -CEIL(-a,b); }
//vector
template<class T> inline vector<T>& operator+=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]+=b[i]; return a; }
template<class T> inline vector<T>& operator-=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]-=b[i]; return a; }
template<class T> inline vector<T>& operator*=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]*=b[i]; return a; }
template<class T> inline vector<T>& operator/=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]/=b[i]; return a; }
template<class T> inline vector<T>& operator%=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]%=b[i]; return a; }
template<class T,class S> inline vector<T>& operator+=(vector<T> &a,S b){ for (T &e: a) e+=b; return a; }
template<class T,class S> inline vector<T>& operator-=(vector<T> &a,S b){ for (T &e: a) e-=b; return a; }
template<class T,class S> inline vector<T>& operator*=(vector<T> &a,S b){ for (T &e: a) e*=b; return a; }
template<class T,class S> inline vector<T>& operator/=(vector<T> &a,S b){ for (T &e: a) e/=b; return a; }
template<class T,class S> inline vector<T>& operator%=(vector<T> &a,S b){ for (T &e: a) e%=b; return a; }
template<class T,class S> inline vector<T> operator+(const vector<T> &a,S b){ vector<T> c=a; return c+=b; }
template<class T,class S> inline vector<T> operator-(const vector<T> &a,S b){ vector<T> c=a; return c-=b; }
template<class T,class S> inline vector<T> operator*(const vector<T> &a,S b){ vector<T> c=a; return c*=b; }
template<class T,class S> inline vector<T> operator/(const vector<T> &a,S b){ vector<T> c=a; return c/=b; }
template<class T,class S> inline vector<T> operator%(const vector<T> &a,S b){ vector<T> c=a; return c%=b; }
template<class T,class S> inline vector<T> operator-(S b,const vector<T> &a){ vector<T> c=-a; return c+=b; }
template<class T> inline vector<T> operator-(const vector<T> &a){ vector<T> c=a; return c*=(-1); }
template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i]; return os; }
#if 0
#include <atcoder/all>
using namespace atcoder;
#endif
// a^b
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
// a^-1
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
long long modlog(long long a, long long b, int m) {
a %= m, b %= m;
// calc sqrt{M}
long long lo = -1, hi = m;
while (hi - lo > 1) {
long long mid = (lo + hi) / 2;
if (mid * mid >= m) hi = mid;
else lo = mid;
}
long long sqrtM = hi;
// {a^0, a^1, a^2, ..., a^sqrt(m)}
map<long long, long long> apow;
long long amari = 1;
for (long long r = 0; r < sqrtM; ++r) {
if (!apow.count(amari)) apow[amari] = r;
(amari *= a) %= m;
}
// check each A^p
long long A = modpow(modinv(a, m), sqrtM, m);
amari = b;
for (long long q = 0; q < sqrtM; ++q) {
if (apow.count(amari)) {
long long res = q * sqrtM + apow[amari];
if (res > 0) return res;
}
(amari *= A) %= m;
}
// no solutions
return -1;
}
void solve()
{
ll n; cin >> n;
if (n==1){
cout << 1 << '\n';return;
}
int m=(int)(2*n-1);
ll a=2;
ll x=modlog(a,1,m);
cout << x << '\n';
}
int main(){
#if 0
solve();
#else
ll t; cin >> t;
rep(i, 0, t-1){
solve();
}
#endif
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0