結果
問題 | No.1255 ハイレーツ・オブ・ボリビアン |
ユーザー |
![]() |
提出日時 | 2020-10-09 23:11:37 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,810 bytes |
コンパイル時間 | 2,079 ms |
コンパイル使用メモリ | 200,532 KB |
最終ジャッジ日時 | 2025-01-15 05:45:34 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 2 WA * 12 TLE * 1 |
ソースコード
·#include "bits/stdc++.h"using namespace std;using ll=long long;using vll=vector< ll>;using vvll=vector< vll>;using vvvll=vector< vvll>;using vvvvll=vector<vvvll>;using dd=double;using vdd=vector< dd>;using vvdd=vector< vdd>;using pll=pair<ll,ll>; using tll=tuple<ll,ll,ll>; using qll=tuple<ll,ll,ll,ll>;constexpr ll INF = 1LL << 60;struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast;#define REPS(i, S, E) for (ll i = (S); i <= (E); i++)#define REP(i, N) REPS(i, 0, (N)-1)#define DEPS(i, S, E) for (ll i = (E); i >= (S); i--)#define DEP(i, N) DEPS(i, 0, (N)-1)#define rep(i, S, E) for (ll i = (S); i <= (E); i++)#define dep(i, E, S) for (ll i = (E); i >= (S); i--)#define each(e, v) for (auto&& e : v)#define ALL(v) (v).begin(), (v).end()#define RALL(v) (v).rbegin(), (v).rend()template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; }template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; }template<class T> inline T MaxE(vector<T>&v,ll S,ll E){ T m=v[S]; rep(i,S,E)chmax(m,v[i]); return m; }template<class T> inline T MinE(vector<T>&v,ll S,ll E){ T m=v[S]; rep(i,S,E)chmin(m,v[i]); return m; }template<class T> inline T MaxE(vector<T> &v) { return MaxE(v,0,(ll)v.size()-1); }template<class T> inline T MinE(vector<T> &v) { return MinE(v,0,(ll)v.size()-1); }template<class T> inline T Sum(vector<T> &v,ll S,ll E){ T s=T(); rep(i,S,E)s+=v[i]; return s; }template<class T> inline T Sum(vector<T> &v) { return Sum(v,0,v.size()-1); }template<class T> inline ll sz(T &v){ return (ll)v.size(); }inline ll CEIL(ll a,ll b){ return (a<0) ? -(-a/b) : (a+b-1)/b; }inline ll FLOOR(ll a,ll b){ return -CEIL(-a,b); }//vector用テンプレートtemplate<class T> inline vector<T>& operator+=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]+=b[i]; return a; }template<class T> inline vector<T>& operator-=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]-=b[i]; return a; }template<class T> inline vector<T>& operator*=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]*=b[i]; return a; }template<class T> inline vector<T>& operator/=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]/=b[i]; return a; }template<class T> inline vector<T>& operator%=(vector<T> &a,const vector<T> &b){ for (ll i=0; i<(ll)a.size(); i++) a[i]%=b[i]; return a; }template<class T,class S> inline vector<T>& operator+=(vector<T> &a,S b){ for (T &e: a) e+=b; return a; }template<class T,class S> inline vector<T>& operator-=(vector<T> &a,S b){ for (T &e: a) e-=b; return a; }template<class T,class S> inline vector<T>& operator*=(vector<T> &a,S b){ for (T &e: a) e*=b; return a; }template<class T,class S> inline vector<T>& operator/=(vector<T> &a,S b){ for (T &e: a) e/=b; return a; }template<class T,class S> inline vector<T>& operator%=(vector<T> &a,S b){ for (T &e: a) e%=b; return a; }template<class T,class S> inline vector<T> operator+(const vector<T> &a,S b){ vector<T> c=a; return c+=b; }template<class T,class S> inline vector<T> operator-(const vector<T> &a,S b){ vector<T> c=a; return c-=b; }template<class T,class S> inline vector<T> operator*(const vector<T> &a,S b){ vector<T> c=a; return c*=b; }template<class T,class S> inline vector<T> operator/(const vector<T> &a,S b){ vector<T> c=a; return c/=b; }template<class T,class S> inline vector<T> operator%(const vector<T> &a,S b){ vector<T> c=a; return c%=b; }template<class T,class S> inline vector<T> operator-(S b,const vector<T> &a){ vector<T> c=-a; return c+=b; }template<class T> inline vector<T> operator-(const vector<T> &a){ vector<T> c=a; return c*=(-1); }template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i]; return os; }#if 0#include <atcoder/all>using namespace atcoder;#endif// a^blong long modpow(long long a, long long n, long long mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}// a^-1long long modinv(long long a, long long m) {long long b = m, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}long long modlog(long long a, long long b, int m) {a %= m, b %= m;// calc sqrt{M}long long lo = -1, hi = m;while (hi - lo > 1) {long long mid = (lo + hi) / 2;if (mid * mid >= m) hi = mid;else lo = mid;}long long sqrtM = hi;// {a^0, a^1, a^2, ..., a^sqrt(m)}map<long long, long long> apow;long long amari = 1;for (long long r = 0; r < sqrtM; ++r) {if (!apow.count(amari)) apow[amari] = r;(amari *= a) %= m;}// check each A^plong long A = modpow(modinv(a, m), sqrtM, m);amari = b;for (long long q = 0; q < sqrtM; ++q) {if (apow.count(amari)) {long long res = q * sqrtM + apow[amari];if (res > 0) return res;}(amari *= A) %= m;}// no solutionsreturn -1;}void solve(){ll n; cin >> n;if (n==1){cout << 1 << '\n';return;}int m=(int)(2*n-1);ll a=2;ll x=modlog(a,1,m);cout << x << '\n';}int main(){#if 0solve();#elsell t; cin >> t;rep(i, 0, t-1){solve();}#endifreturn 0;}