結果
| 問題 |
No.1255 ハイレーツ・オブ・ボリビアン
|
| コンテスト | |
| ユーザー |
yuusanlondon
|
| 提出日時 | 2020-10-09 23:18:14 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,074 bytes |
| コンパイル時間 | 160 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 851,840 KB |
| 最終ジャッジ日時 | 2024-07-20 14:13:37 |
| 合計ジャッジ時間 | 2,788 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 7 RE * 2 MLE * 1 -- * 5 |
ソースコード
# Python3 program to calculate
# discrete logarithm
import math;
def discreteLogarithm(a, b, m):
n = int(math.sqrt (m) + 1);
# Calculate a ^ n
an = 1;
for i in range(n):
an = (an * a) % m;
value = [0] * m;
# Store all values of a^(n*i) of LHS
cur = an;
for i in range(1, n + 1):
if (value[ cur ] == 0):
value[ cur ] = i;
cur = (cur * an) % m;
cur = b;
for i in range(n + 1):
# Calculate (a ^ j) * b and check
# for collision
if (value[cur] > 0):
ans = value[cur] * n - i;
if (ans < m):
return ans;
cur = (cur * a) % m;
return -1;
# A simple Python3 program
# to calculate Euler's
# Totient Function
# Function to return
# gcd of a and b
def gcd(a, b):
if (a == 0):
return b
return gcd(b % a, a)
# Python3 program to calculate
# Euler's Totient Function
def phi(n):
# Initialize result as n
result = n;
# Consider all prime factors
# of n and subtract their
# multiples from result
p = 2;
while(p * p <= n):
# Check if p is a
# prime factor.
if (n % p == 0):
# If yes, then
# update n and result
while (n % p == 0):
n = int(n / p);
result -= int(result / p);
p += 1;
# If n has a prime factor
# greater than sqrt(n)
# (There can be at-most
# one such prime factor)
if (n > 1):
result -= int(result / n);
return result;
# This code is contributed
# by mits
t=int(input())
for _ in range(t):
n=int(input())
a=discreteLogarithm(2,1,2*n-1)
totient=phi(2*n-1)
while True:
flag=0
count=2
while count*count<=totient:
if totient%count==0 and pow(2,totient//count,2*n-1)==1:
totient=totient//count
break
count+=1
if count*count>totient:
flag=1
if flag==1:
break
print(totient)
yuusanlondon