結果

問題 No.1255 ハイレーツ・オブ・ボリビアン
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-10-09 23:52:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 19,521 bytes
コンパイル時間 4,115 ms
コンパイル使用メモリ 325,604 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-23 08:46:50
合計ジャッジ時間 4,523 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 3 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 3 ms
6,944 KB
testcase_08 AC 3 ms
6,944 KB
testcase_09 AC 3 ms
6,944 KB
testcase_10 AC 3 ms
6,940 KB
testcase_11 AC 3 ms
6,944 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 3 ms
6,940 KB
testcase_15 AC 3 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2020-10-09 23:52:12
 */

/**
 *  date : 2020-10-09 21:45:06
 */

#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>

#include <bits/stdc++.h>

#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...)      \
  do {                \
    out(__VA_ARGS__); \
    return;           \
  } while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << " ";
  out(u...);
}

#ifdef NyaanDebug
#define trc(...)                   \
  do {                             \
    cerr << #__VA_ARGS__ << " = "; \
    dbg_out(__VA_ARGS__);          \
  } while (0)
#define trca(v, N)       \
  do {                   \
    cerr << #v << " = "; \
    array_out(v, N);     \
  } while (0)
#define trcc(v)                             \
  do {                                      \
    cerr << #v << " = {";                   \
    each(x, v) { cerr << " " << x << ","; } \
    cerr << "}" << endl;                    \
  } while (0)
template <typename T>
void _cout(const T &c) {
  cerr << c;
}
void _cout(const int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else if (c == -1001001001)
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else
    cerr << c;
}
void _cout(const long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else if (c == -1001001001 || c == -((1LL << 61) - 1))
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else
    cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
  cerr << "{ ";
  _cout(p.fi);
  cerr << ", ";
  _cout(p.se);
  cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
  int s = v.size();
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
  cerr << "[ ";
  for (const auto &x : v) {
    cerr << endl;
    _cout(x);
    cerr << ", ";
  }
  cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
  _cout(t);
  if (sizeof...(u)) cerr << ", ";
  dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
  cerr << "[ ";
  for (int i = 0; i < H; i++) {
    cerr << (i ? ", " : "");
    array_out(v[i], W);
  }
  cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif

inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
  a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
  a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
  return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
  return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  while (n) {
    if (n & 1) ret *= x;
    x *= x;
    n >>= 1;
  }
  return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
  vector<T> ret(v.size() + 1);
  for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
  vector<T> ret(N);
  iota(begin(ret), end(ret), 0);
  return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
  vector<int> inv(v.size());
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

void solve();
int main() { solve(); }

#pragma endregion

/*
int f(int n) {
  vi a(n * 2), c(n * 2);
  iota(all(a), 0);
  iota(all(c), 0);

  auto g = [&]() {
    vi b(n * 2);
    rep(i, n) {
      b[i * 2 + 0] = a[i];
      b[i * 2 + 1] = a[i + n];
    }
    swap(a, b);
  };
  int cnt = 0;
  do {
    g();
    cnt++;
  } while (cnt < 1000 && a != c);
  return cnt == 1000 ? -1 : cnt;
}
*/

using namespace std;

long long my_gcd(long long x, long long y) {
  long long z;
  if (x > y) swap(x, y);
  while (x) {
    x = y % (z = x);
    y = z;
  }
  return y;
}
long long my_lcm(long long x, long long y) {
  return 1LL * x / my_gcd(x, y) * y;
}
#define gcd my_gcd
#define lcm my_lcm

// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
  vector<int> ret(N + 1, 0);
  for (int i = 0; i <= N; i++) ret[i] = i;
  for (int i = 2; i <= N; i++) {
    if (ret[i] == i)
      for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
  }
  return ret;
}

// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
  vector<long long> v;
  for (long long i = 1; i * i <= N; i++) {
    if (N % i == 0) {
      v.push_back(i);
      if (i * i != N) v.push_back(N / i);
    }
  }
  return v;
}

// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
  vector<pair<long long, int> > ret;
  for (long long p = 2; p * p <= N; p++)
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
                                           const vector<long long> &prime) {
  vector<pair<long long, int> > ret;
  for (auto &p : prime) {
    if (p * p > N) break;
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
  a %= mod;
  long long ret = 1;
  while (n > 0) {
    if (n & 1) ret = ret * a % mod;
    a = a * a % mod;
    n >>= 1;
  }
  return ret % mod;
};

// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
  r %= mod;
  if (r == 0) return false;
  auto pf = PrimeFactors(mod - 1);
  for (auto &x : pf) {
    if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
  }
  return true;
}

// Get Primitive Root
long long PrimitiveRoot(long long mod) {
  long long ret = 1;
  while (isPrimitiveRoot(ret, mod) == false) ret++;
  return ret;
}

// Euler's phi function
long long phi(long long n) {
  auto pf = PrimeFactors(n);
  long long ret = n;
  for (auto p : pf) {
    ret /= p.first;
    ret *= (p.first - 1);
  }
  return ret;
}

// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
// return : pair(x, y)
pair<long long, long long> extgcd(long long a, long long b) {
  if (b == 0) return make_pair(1, 0);
  long long x, y;
  tie(y, x) = extgcd(b, a % b);
  y -= a / b * x;
  return make_pair(x, y);
}

// Check if n is Square Number
// true : return d s.t. d * d == n
// false : return -1
long long SqrtInt(long long n) {
  if (n == 0 || n == 1) return n;
  long long d = (long long)sqrt(n) - 1;
  while (d * d < n) ++d;
  return (d * d == n) ? d : -1;
}

// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(long long n, int zero = 1) {
  if (n == 0) return zero;
  int ret = 0;
  while (n) {
    n /= 10;
    ret++;
  }
  return ret;
}
using namespace std;

using namespace std;

namespace inner {

using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;

template <typename T>
T gcd(T a, T b) {
  while (b) swap(a %= b, b);
  return a;
}

template <typename T>
T inv(T a, T p) {
  T b = p, x = 1, y = 0;
  while (a) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  assert(b == 1);
  return y < 0 ? y + p : y;
}

template <typename T, typename U>
T modpow(T a, U n, T p) {
  T ret = 1 % p;
  for (; n; n >>= 1, a = U(a) * a % p)
    if (n & 1) ret = U(ret) * a % p;
  return ret;
}

}  // namespace inner
using namespace std;

unsigned long long rng() {
  static unsigned long long x_ = 88172645463325252ULL;
  x_ = x_ ^ (x_ << 7);
  return x_ = x_ ^ (x_ >> 9);
}using namespace std;

struct ArbitraryLazyMontgomeryModInt {
  using mint = ArbitraryLazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static u32 mod;
  static u32 r;
  static u32 n2;

  static u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u32 m) {
    assert(m < (1 << 30));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u64(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u32 a;

  ArbitraryLazyMontgomeryModInt() : a(0) {}
  ArbitraryLazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = ArbitraryLazyMontgomeryModInt(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;
using namespace std;

struct montgomery64 {
  using mint = montgomery64;
  using i64 = int64_t;
  using u64 = uint64_t;
  using u128 = __uint128_t;

  static u64 mod;
  static u64 r;
  static u64 n2;

  static u64 get_r() {
    u64 ret = mod;
    for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u64 m) {
    assert(m < (1LL << 62));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u128(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u64 a;

  montgomery64() : a(0) {}
  montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};

  static u64 reduce(const u128 &b) {
    return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
  }

  mint &operator+=(const mint &b) {
    if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i64(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u128(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u128 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = montgomery64(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u64 get() const {
    u64 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;

namespace fast_factorize {
using u64 = uint64_t;

template <typename mint>
bool miller_rabin(u64 n, vector<u64> as) {
  if (mint::get_mod() != n) mint::set_mod(n);
  u64 d = n - 1;
  while (~d & 1) d >>= 1;
  mint e{1}, rev{int64_t(n - 1)};
  for (u64 a : as) {
    if (n <= a) break;
    u64 t = d;
    mint y = mint(a).pow(t);
    while (t != n - 1 && y != e && y != rev) {
      y *= y;
      t *= 2;
    }
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool is_prime(u64 n) {
  if (~n & 1) return n == 2;
  if (n <= 1) return false;
  if (n < (1LL << 30))
    return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61});
  else
    return miller_rabin<montgomery64>(
        n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}

template <typename mint, typename T>
T pollard_rho(T n) {
  if (~n & 1) return 2;
  if (is_prime(n)) return n;
  if (mint::get_mod() != n) mint::set_mod(n);
  mint R, one = 1;
  auto f = [&](mint x) { return x * x + R; };
  auto rnd = [&]() { return rng() % (n - 2) + 2; };
  while (1) {
    mint x, y, ys, q = one;
    R = rnd(), y = rnd();
    T g = 1;
    constexpr int m = 128;
    for (int r = 1; g == 1; r <<= 1) {
      x = y;
      for (int i = 0; i < r; ++i) y = f(y);
      for (int k = 0; g == 1 && k < r; k += m) {
        ys = y;
        for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
        g = inner::gcd<T>(q.get(), n);
      }
    }
    if (g == n) do
        g = inner::gcd<T>((x - (ys = f(ys))).get(), n);
      while (g == 1);
    if (g != n) return g;
  }
  exit(1);
}

vector<u64> inner_factorize(u64 n) {
  if (n <= 1) return {};
  u64 p;
  if (n <= (1LL << 30))
    p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n);
  else
    p = pollard_rho<montgomery64, uint64_t>(n);
  if (p == n) return {p};
  auto l = inner_factorize(p);
  auto r = inner_factorize(n / p);
  copy(begin(r), end(r), back_inserter(l));
  return l;
}

vector<u64> factorize(u64 n) {
  auto ret = inner_factorize(n);
  sort(begin(ret), end(ret));
  return ret;
}

}  // namespace fast_factorize
using fast_factorize::factorize;
using fast_factorize::is_prime;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */

void solve() {
  ini(T);
  rep(_, T) {
    inl(n);
    if (n == 1) {
      out(1);
      continue;
    }
    ll m = 2 * n - 1;

    ll phi = m;
    {
      auto fm = factorize(m);
      map<ll, ll> fac;
      each(x, fm) fac[x]++;
      each(p, fac) phi = phi / p.first * (p.first - 1);
    }
    
    auto fs = factorize(phi);
    map<ll, ll> fac;
    each(x, fs) fac[x]++;
    //trc(m,fs);
    ll ans=1;
    for(auto[p,n]:fac){
      ll ret=1;
      ll al=modpow(p,n,TEN(18));
      ll inv=phi/al;
      rep(_,n+1){
        if(modpow(2,inv*ret,m)==1)break;
        ret*=p;
      }
      ans*=ret;
    }
    out(ans);
    
  }
}
0