結果

問題 No.526 フィボナッチ数列の第N項をMで割った余りを求める
ユーザー minatominato
提出日時 2020-10-10 09:38:47
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,636 bytes
コンパイル時間 3,180 ms
コンパイル使用メモリ 219,256 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-20 15:40:32
合計ジャッジ時間 3,411 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef ONLINE_JUDGE
#pragma GCC target("avx2,avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define all(x) (x).begin(), (x).end()
constexpr char ln = '\n';
template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}
template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}
struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Int, int sz>
struct SquareMatrix {
    using arr = array<Int, sz>;
   	using mat = array<arr, sz>;
    mat A;
	int N;

   	SquareMatrix() : SquareMatrix(sz) {}
   	SquareMatrix(int N) : N(N) {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                A[i][j] = 0;
            }
        }
    }

    int size() { return N; }
	const arr& operator[](int k) const { return A[k]; }
  	arr& operator[](int k) { return A[k]; }

    static SquareMatrix add_identity(int N) { return SquareMatrix(N); }
  	static SquareMatrix mul_identity(int N) {
        SquareMatrix I(N);
    	for(int i = 0; i < N; i++) I[i][i] = 1;
    	return I;
  	}

  	SquareMatrix &operator+=(const SquareMatrix &B) {
    	for(int i = 0; i < N; i++) {
      	    for(int j = 0; j < N; j++) {
        	    (*this)[i][j] += B[i][j];
            }
        }
    	return *this;
  	}

  	SquareMatrix &operator-=(const SquareMatrix &B) {
    	for(int i = 0; i < N; i++) {
      		for(int j = 0; j < N; j++) {
				(*this)[i][j] -= B[i][j];
			}
		}
    	return *this;
  	}

    SquareMatrix &operator*=(const SquareMatrix &B) {
        SquareMatrix C(N);
        for(int i = 0; i < N; i++) {
            for(int k = 0; k < N; k++) {
                for(int j = 0; j < N; j++) {
                    C[i][j] += (*this)[i][k] * B[k][j];
                }
            }
        }
        A.swap(C.A);
        return *this;
    }

    SquareMatrix &operator^=(long long k) {
        SquareMatrix B = SquareMatrix::mul_identity(N);
        while(k) {
            if(k & 1) B *= *this;
            *this *= *this;
            k >>= 1;
        }
        A.swap(B.A);
        return *this;
    }

    SquareMatrix pow(long long k) {
        SquareMatrix ret = A;
        A ^= k;
        return A;
    }

    SquareMatrix operator+(const SquareMatrix &B) const { return (SquareMatrix(*this) += B); }
    SquareMatrix operator-(const SquareMatrix &B) const { return (SquareMatrix(*this) -= B); }
    SquareMatrix operator*(const SquareMatrix &B) const { return (SquareMatrix(*this) *= B); }
    SquareMatrix operator^(const long long k) const { return (SquareMatrix(*this) ^= k); }
    bool operator==(const SquareMatrix& B) const { return A == B.A; }
    bool operator!=(const SquareMatrix& B) const { return A != B.A; }
};

/////////////////////////////////////////////////////////////////////////////////////

//ModInt::set(M)
struct ModInt {
    using u64 = uint_fast64_t;

    u64 a;

    ModInt(long long x = 0) : a(x >= 0 ? x % Modulus() : (Modulus() - (-x) % Modulus()) % Modulus()) {}

    static u64 &Modulus() {static u64 Modulus = 0; return Modulus;}
    static void set (u64 M) {Modulus() = M;}

    ModInt operator+(const ModInt rhs) const noexcept {return ModInt(*this) += rhs;}
    ModInt operator-(const ModInt rhs) const noexcept {return ModInt(*this) -= rhs;}
    ModInt operator*(const ModInt rhs) const noexcept {return ModInt(*this) *= rhs;}
    ModInt operator/(const ModInt rhs) const noexcept {return ModInt(*this) /= rhs;}
    ModInt operator^(const long long rhs) const noexcept {return ModInt(*this) ^= rhs;}
    bool operator==(const ModInt &rhs) const noexcept {return a == rhs.a;}
    bool operator!=(const ModInt &rhs) const noexcept {return a != rhs.a;}
    ModInt &operator+=(const ModInt rhs) noexcept {
        a += rhs.a;
        if (a >= Modulus()) {
            a -= Modulus();
        }
        return *this;
    }
    ModInt &operator-=(const ModInt rhs) noexcept {
        if (a < rhs.a) {
            a += Modulus();
        }
        a -= rhs.a;
        return *this;
    }
    ModInt &operator*=(ModInt rhs) noexcept {
        a = a * rhs.a % Modulus();
        return *this;
    }
    ModInt &operator/=(ModInt rhs) noexcept {
        u64 exp = Modulus() - 2;
        while (exp) {
            if (exp&1) *this *= rhs;
            exp >>= 1;
            rhs *= rhs;
        }
        return *this;
    }
    ModInt &operator^=(long long exp) noexcept {
        ModInt rhs = a;
        a = 1;
        while (exp) {
            if (exp&1) *this *= rhs;
            exp >>= 1;
            rhs *= rhs;
        }
        return *this;
    }

    friend ostream &operator<<(ostream& os, const ModInt& rhs) noexcept {return os << rhs.a;}
    friend istream &operator>>(istream& is, ModInt& rhs) noexcept {long long a; is >> a; rhs = a; return is;}
};

using mint = ModInt;

void yuki526() {
    long long N,M; cin >> N >> M;

    ModInt::set(M);
    SquareMatrix<mint,2> mat(2);

    mat[0][0] = mat[0][1] = mat[1][0] = 1;
    mat ^= N-1;

    cout << mat[1][0] << endl;
}

int main() {
    yuki526();
}

/*
  verified on 2020/05/20
  https://yukicoder.me/problems/no/526
*/
0