結果
| 問題 |
No.1145 Sums of Powers
|
| ユーザー |
Chanyuh
|
| 提出日時 | 2020-10-11 13:09:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 265 ms / 2,000 ms |
| コード長 | 17,313 bytes |
| コンパイル時間 | 2,139 ms |
| コンパイル使用メモリ | 146,696 KB |
| 最終ジャッジ日時 | 2025-01-15 06:35:25 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 998244353;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}
template<int mod>
struct ModInt {
long long x;
static constexpr int MOD = mod;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const {return x;}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator%(const ModInt &p) const { return ModInt(0); }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const{
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt power(const ModInt p) const{
return ((ModInt)x).power(p.x);
}
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
template <typename Mint>
struct NumberTheoreticTransformFriendlyModInt {
vector<Mint> dw, idw;
int max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() {
const unsigned mod = Mint::MOD;
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0)
tmp >>= 1, max_base++;
root = 2;
while(root.power((mod - 1) >> 1) == 1)
root += 1;
assert(root.power(mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for(int i = 0; i < max_base; i++) {
dw[i] = -root.power((mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector<Mint> &a) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = n; m >>= 1;) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector<Mint> &a, bool f = true) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = 1; m < n; m *= 2) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++)
a[i] *= inv_sz;
}
}
vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need)
nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++)
a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template <typename T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using P = FormalPowerSeries;
using MULT = function<P(P, P)>;
using FFT = function<void(P &)>;
using SQRT = function<T(T)>;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_mult(MULT f) {
get_mult() = f;
}
static FFT &get_fft() {
static FFT fft = nullptr;
return fft;
}
static FFT &get_ifft() {
static FFT ifft = nullptr;
return ifft;
}
static void set_fft(FFT f, FFT g) {
get_fft() = f;
get_ifft() = g;
}
static SQRT &get_sqrt() {
static SQRT sqr = nullptr;
return sqr;
}
static void set_sqrt(SQRT sqr) {
get_sqrt() = sqr;
}
void shrink() {
while(this->size() && this->back() == T(0))
this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size())
this->resize(r.size());
for(int i = 0; i < r.size(); i++)
(*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty())
this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size())
this->resize(r.size());
for(int i = 0; i < r.size(); i++)
(*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty())
this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int)this->size();
for(int k = 0; k < n; k++)
(*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P &operator%=(const P &r) { return *this -= *this / r * r; }
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++)
ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < ret.size(); i++)
ret[i] = (*this)[i] * r[i];
return ret;
}
P pre(int sz) const { return P(begin(*this), begin(*this) + min((int)this->size(), sz)); }
P operator>>(int sz) const {
if(this->size() <= sz)
return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1)
ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int)this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++)
ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int)this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++)
ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int)this->size();
if(deg == -1)
deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.inv_fast();
}
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int)this->size();
if(deg == -1)
deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int)this->size();
if(deg == -1)
deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1)
return {};
if(deg - i / 2 <= 0)
break;
auto ret = (*this >> i).sqrt(deg - i / 2);
if(ret.empty())
return {};
ret = ret << (i / 2);
if(ret.size() < deg)
ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret;
if(get_sqrt() == nullptr) {
assert((*this)[0] == T(1));
ret = {T(1)};
} else {
auto sqr = get_sqrt()((*this)[0]);
if(sqr * sqr != (*this)[0])
return {};
ret = {T(sqr)};
}
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int)this->size();
if(deg == -1)
deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.exp_rec();
}
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P online_convolution_exp(const P &conv_coeff) const {
const int n = (int)conv_coeff.size();
assert((n & (n - 1)) == 0);
vector<P> conv_ntt_coeff;
auto &fft = get_fft();
auto &ifft = get_ifft();
for(int i = n; i >= 1; i >>= 1) {
P g(conv_coeff.pre(i));
fft(g);
conv_ntt_coeff.emplace_back(g);
}
P conv_arg(n), conv_ret(n);
auto rec = [&](auto rec, int l, int r, int d) -> void {
if(r - l <= 16) {
for(int i = l; i < r; i++) {
T sum = 0;
for(int j = l; j < i; j++)
sum += conv_arg[j] * conv_coeff[i - j];
conv_ret[i] += sum;
conv_arg[i] = i == 0 ? T(1) : conv_ret[i] / i;
}
} else {
int m = (l + r) / 2;
rec(rec, l, m, d + 1);
P pre(r - l);
for(int i = 0; i < m - l; i++)
pre[i] = conv_arg[l + i];
fft(pre);
for(int i = 0; i < r - l; i++)
pre[i] *= conv_ntt_coeff[d][i];
ifft(pre);
for(int i = 0; i < r - m; i++)
conv_ret[m + i] += pre[m + i - l];
rec(rec, m, r, d + 1);
}
};
rec(rec, 0, n, 0);
return conv_arg;
}
P exp_rec() const {
assert((*this)[0] == T(0));
const int n = (int)this->size();
int m = 1;
while(m < n)
m *= 2;
P conv_coeff(m);
for(int i = 1; i < n; i++)
conv_coeff[i] = (*this)[i] * i;
return online_convolution_exp(conv_coeff).pre(n);
}
P inv_fast() const {
assert(((*this)[0]) != T(0));
const int n = (int)this->size();
P res{T(1) / (*this)[0]};
for(int d = 1; d < n; d <<= 1) {
P f(2 * d), g(2 * d);
for(int j = 0; j < min(n, 2 * d); j++)
f[j] = (*this)[j];
for(int j = 0; j < d; j++)
g[j] = res[j];
get_fft()(f);
get_fft()(g);
for(int j = 0; j < 2 * d; j++)
f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) {
f[j] = 0;
f[j + d] = -f[j + d];
}
get_fft()(f);
for(int j = 0; j < 2 * d; j++)
f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++)
f[j] = res[j];
res = f;
}
return res.pre(n);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if(deg == -1)
deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].power(k));
if(i * k > deg)
return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg)
ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
P pow_mod(int64_t n, P mod) const {
P modinv = mod.rev().inv();
auto get_div = [&](P base) {
if(base.size() < mod.size()) {
base.clear();
return base;
}
int n = base.size() - mod.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(n > 0) {
if(n & 1) {
ret *= x;
ret -= get_div(ret) * mod;
}
x *= x;
x -= get_div(x) * mod;
n >>= 1;
}
return ret;
}
};
using modint = ModInt<mod>;
using FPS = FormalPowerSeries<modint>;
int n,m;
modint a[100010];
NumberTheoreticTransformFriendlyModInt<modint> ntt;
FPS::P calc(int l,int r){
if(r-l<1) return {1};
if(r-l==1) return {1,-a[l]};
int mid=(l+r)/2;
auto res= ntt.multiply(calc(l,mid),calc(mid,r));
return FPS::P(begin(res),end(res));
}
void solve(){
auto mult=[&](const FPS::P &a,const FPS::P &b){
auto f=ntt.multiply(a,b);
return FPS::P(begin(f),end(f));
};
FPS::set_mult(mult);
FPS::set_fft([&](FPS::P &a){return ntt.ntt(a);},[&](FPS::P &a){return ntt.intt(a);});
cin >> n >> m;
rep(i,n) cin >> a[i];
FPS F=calc(0,n);
F=-F.log(m+2);
F=F.diff();
rep(i,m){
cout << F[i] << " ";
}
cout << "" << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
Chanyuh