結果

問題 No.196 典型DP (1)
ユーザー 🍮かんプリン🍮かんプリン
提出日時 2020-10-13 21:39:27
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 11,179 bytes
コンパイル時間 3,883 ms
コンパイル使用メモリ 213,244 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-20 18:48:52
合計ジャッジ時間 6,902 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
* @FileName a.cpp
* @Author kanpurin
* @Created 2020.10.13 21:39:21
**/
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
template< int MOD >
struct mint {
public:
long long x;
mint(long long x = 0) :x((x%MOD+MOD)%MOD) {}
mint(std::string &s) {
long long z = 0;
for (int i = 0; i < s.size(); i++) {
z *= 10;
z += s[i] - '0';
z %= MOD;
}
this->x = z;
}
mint& operator+=(const mint &a) {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
mint& operator-=(const mint &a) {
if ((x += MOD - a.x) >= MOD) x -= MOD;
return *this;
}
mint& operator*=(const mint &a) {
(x *= a.x) %= MOD;
return *this;
}
mint& operator/=(const mint &a) {
long long n = MOD - 2;
mint u = 1, b = a;
while (n > 0) {
if (n & 1) {
u *= b;
}
b *= b;
n >>= 1;
}
return *this *= u;
}
mint operator+(const mint &a) const {
mint res(*this);
return res += a;
}
mint operator-() const {return mint() -= *this; }
mint operator-(const mint &a) const {
mint res(*this);
return res -= a;
}
mint operator*(const mint &a) const {
mint res(*this);
return res *= a;
}
mint operator/(const mint &a) const {
mint res(*this);
return res /= a;
}
friend std::ostream& operator<<(std::ostream &os, const mint &n) {
return os << n.x;
}
friend std::istream &operator>>(std::istream &is, mint &n) {
long long x;
is >> x;
n = mint(x);
return is;
}
bool operator==(const mint &a) const {
return this->x == a.x;
}
mint pow(long long k) const {
mint ret = 1;
mint p = this->x;
while (k > 0) {
if (k & 1) {
ret *= p;
}
p *= p;
k >>= 1;
}
return ret;
}
};
constexpr int MOD = 1e9 + 7;
template < const int MOD , bool any = false>
struct FormalPowerSeries {
private:
using P = FormalPowerSeries< MOD, any >;
template < class T, class F = multiplies< T > >
T power(T a, long long n, F op = multiplies< T >(), T e = {1}) const {
assert(n >= 0);
T res = e;
while (n) {
if (n & 1) res = op(res, a);
if (n >>= 1) a = op(a, a);
}
return res;
}
template< int _MOD >
void ntt(vector< mint < _MOD > >& a, bool inverse) {
static vector< mint< _MOD > > dw(30), idw(30);
if (dw[0] == 0) {
mint< _MOD > root = 2;
while (power(root, (_MOD - 1) / 2) == 1) root += 1;
for (int i = 0; i < 30; i++) dw[i] = -power(root, (_MOD - 1) >> (i + 2)), idw[i] = mint<_MOD>(1) / dw[i];
}
int n = a.size();
assert((n & (n - 1)) == 0);
if (not inverse) {
for (int m = n; m >>= 1;) {
mint< _MOD > w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; i++, j++) {
auto x = a[i], y = a[j] * w;
if (x.x >= _MOD) x.x -= _MOD;
a[i].x = x.x + y.x, a[j].x = x.x + (_MOD - y.x);
}
w *= dw[__builtin_ctz(++k)];
}
}
} else {
for (int m = 1; m < n; m *= 2) {
mint< _MOD > w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; i++, j++) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j].x = x.x + (_MOD - y.x), a[j] *= w;
}
w *= idw[__builtin_ctz(++k)];
}
}
}
auto c = mint<_MOD>(1) / mint< _MOD >(inverse ? n : 1);
for (auto&& e : a) e *= c;
}
template< int _MOD >
vector< mint< _MOD > > convolution(vector< mint< _MOD > > l, vector< mint< _MOD > > r) {
if (l.empty() || r.empty()) return {};
int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1);
if (min(n, m) < 30) {
vector< long long > res(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) res[i + j] += (l[i] * r[j]).x;
return {begin(res), end(res)};
}
bool eq = l == r;
l.resize(sz), ntt(l, false);
if (eq) r = l;
else r.resize(sz), ntt(r, false);
for (int i = 0; i < sz; i++) l[i] *= r[i];
ntt(l, true), l.resize(n + m - 1);
return l;
}
P pre(const P &p, int sz) const {
P ret;
ret.a = vector<mint<MOD>>(p.a.begin(), p.a.begin() + min((int)p.a.size(), sz));
return ret;
}
public:
vector<mint<MOD>> a;
FormalPowerSeries(int sz = 0) {
this->a.resize(sz, 0);
}
FormalPowerSeries(std::initializer_list<mint<MOD>> v) {
this->a = v;
}
P resize(int k) const {
return pre(*this,k);
}
size_t size() const { return this->a.size(); }
bool operator<(const P& r) const { return this->a.size() < r.a.size(); }
bool operator>(const P& r) const { return this->a.size() > r.a.size(); }
P operator+(const P &a) const { return P(*this) += a; }
P operator+(const long long a) const { return P(*this) += a; }
P operator-(const P &a) const { return P(*this) -= a; }
P operator*(const P &a) const { return P(*this) *= a; }
P operator*(const long long a) const { return P(*this) *= a; }
P operator/(const P &a) const { return P(*this) /= a; }
P &operator+=(const P &r) {
this->a.resize(max(this->a.size(),r.size()));
for(int i = 0; i < (int)r.size(); i++) this->a[i] += r.a[i];
return *this;
}
P &operator+=(const long long v) {
if (this->a.size() == 0) this->a.resize(1,(v % MOD + MOD) % MOD);
else this->a[0] += v;
return *this;
}
P &operator-=(const P &r) {
this->a.resize(max(this->a.size(),r.size()));
for(int i = 0; i < (int)r.size(); i++) this->a[i] -= r.a[i];
return *this;
}
P &operator*=(const P &b) {
if (!any) {
this->a = convolution(this->a, b.a);
return *this;
}
else {
if (this->a.empty() || b.a.empty()) {
this->a.clear();
return *this;
}
int n = this->a.size(), m = b.a.size();
static constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617;
using Mint0 = mint< mod0 >;
using Mint1 = mint< mod1 >;
using Mint2 = mint< mod2 >;
vector< Mint0 > l0(n), r0(m);
vector< Mint1 > l1(n), r1(m);
vector< Mint2 > l2(n), r2(m);
for (int i = 0; i < n; i++) l0[i] = this->a[i].x, l1[i] = this->a[i].x, l2[i] = this->a[i].x;
for (int j = 0; j < m; j++) r0[j] = b.a[j].x, r1[j] = b.a[j].x, r2[j] = b.a[j].x;
l0 = convolution(l0,r0);
l1 = convolution(l1,r1);
l2 = convolution(l2,r2);
this->a.resize(n + m - 1);
static const Mint1 im0 = Mint1(1) / Mint1(mod0);
static const Mint2 im1 = Mint2(1) / Mint2(mod1), im0m1 = im1 / mod0;
static const mint<MOD> m0 = mod0, m0m1 = m0 * mod1;
for (int i = 0; i < n + m - 1; i++) {
int y0 = l0[i].x;
int y1 = (im0 * (l1[i] - y0)).x;
int y2 = (im0m1 * (l2[i] - y0) - im1 * y1).x;
this->a[i] = m0m1 * y2 + y0 + m0 * y1;
}
return *this;
}
}
P &operator*=(const long long v) {
for (int i = 0; i < this->a.size(); i++) this->a[i] *= v;
return *this;
}
P &operator/=(const P &a) {
*this *= a.inverse();
return *this;
}
P inverse(int deg = -1) const {
assert(this->a.size() != 0 && this->a[0].x != 0);
const int n = (int)this->a.size();
if(deg == -1) deg = n;
P ret(1);
ret[0] = mint<MOD>(1) / a[0];
for(int i = 1; i < deg; i <<= 1) {
ret = pre((ret + ret - ret * ret * pre(*this,i << 1)),i << 1);
}
return pre(ret,deg);
}
P differential() const {
const int n = (int) this->a.size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i-1] = this->a[i] * i;
return ret;
}
P integral() const {
const int n = (int) this->a.size();
P ret(n + 1);
for(int i = 0; i < n; i++) ret[i + 1] = this->a[i] / (i + 1);
return ret;
}
P log(int deg = -1) const {
assert(this->a.size() != 0 && this->a[0] == 1);
const int n = (int)this->a.size();
if(deg == -1) deg = n;
return pre((this->differential() * this->inverse(deg)),deg - 1).integral();
}
P exp(int deg = -1) const {
if (this->a.size() == 0) return P(0);
assert(this->a[0] == 0);
const int n = (int)this->a.size();
if(deg == -1) deg = n;
P ret(1);
ret.a[0] = 1;
for(int i = 1; i < deg; i <<= 1) {
ret = pre((ret * (pre(*this,i << 1) + 1 - ret.log(i << 1))),i << 1);
}
return pre(ret,deg);
}
P pow(long long k, int deg = -1) const {
const int n = (int) this->a.size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if(this->a[i].x != 0) {
long long rev = (mint<MOD>(1) / this->a[i]).x;
P C = *this * rev;
P D(n - i);
for(int j = i; j < n; j++) D[j - i] = C[j];
D = (D.log() * k).exp() * power(this->a[i], k).x;
P E(deg);
if(i * k > deg) return E;
auto S = i * k;
for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];
return E;
}
}
return *this;
}
mint< MOD > &operator[](int x) {
assert(0 <= x && x < (int)this->a.size());
return a[x];
}
friend std::ostream &operator<<(std::ostream &os, const P &p) {
os << "[ ";
for (int i = 0; i < p.size(); ++i) {
os << p.a[i] << " ";
}
os << "]";
return os;
}
};
vector<vector<int>> g;
FormalPowerSeries<MOD,true> dfs(int v, int p = -1) {
FormalPowerSeries<MOD,true> ret({1});
for(int u : g[v]) {
if (u == p) continue;
ret *= dfs(u,v);
}
FormalPowerSeries<MOD,true> tmp(ret.size()+1);
tmp[ret.size()] += 1;
ret += tmp;
return ret;
}
int main() {
int n,k;cin >> n >> k;
g.resize(n);
for (int i = 0; i < n-1; i++) {
int a,b;cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
auto ans = dfs(0);
cout << ans[k] << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0