結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | こまる |
提出日時 | 2020-10-13 23:24:39 |
言語 | Haskell (9.8.2) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 8,412 bytes |
コンパイル時間 | 183 ms |
コンパイル使用メモリ | 155,520 KB |
最終ジャッジ日時 | 2024-11-14 23:51:55 |
合計ジャッジ時間 | 892 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) Main.hs:15:1: error: [GHC-87110] Could not load module ‘GHC.Integer.GMP.Internals’. It is a member of the hidden package ‘integer-gmp-1.1’. Use -v to see a list of the files searched for. | 15 | import qualified GHC.Integer.GMP.Internals as GMP | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ソースコード
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE UnboxedTuples #-} import Control.Arrow import Control.Monad import Control.Monad.ST import Data.Bits import GHC.Exts import qualified Data.ByteString.Char8 as BSC8 import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM import qualified GHC.Integer.GMP.Internals as GMP type Parser a = BSC8.ByteString -> Maybe (a, BSC8.ByteString) parseInt :: Parser Int parseInt = fmap (second BSC8.tail) . BSC8.readInt parseM :: Int -> IO (VU.Vector Int) parseM m = VU.unfoldrN m parseInt <$> BSC8.getLine infixl 8 .<<., .>>., .>>>. infixl 6 .^. (.<<.) :: Bits b => b -> Int -> b (.<<.) = unsafeShiftL {-# INLINE (.<<.) #-} (.>>.) :: Bits b => b -> Int -> b (.>>.) = unsafeShiftR {-# INLINE (.>>.) #-} (.>>>.) :: Int -> Int -> Int (.>>>.) (I# x#) (I# i#) = I# (uncheckedIShiftRL# x# i#) {-# INLINE (.>>>.) #-} (.^.) :: Bits b => b -> b -> b (.^.) = xor {-# INLINE (.^.) #-} stream :: Monad m => Int -> Int -> VFSM.Stream m Int stream !l !r = VFSM.Stream step l where step x | x < r = return $ VFSM.Yield x (x + 1) | otherwise = return $ VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream 0 n) {-# INLINE rep #-} streamR :: Monad m => Int -> Int -> VFSM.Stream m Int streamR !l !r = VFSM.Stream step (r - 1) where step x | x >= l = return $ VFSM.Yield x (x - 1) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamR #-} rev :: Monad m => Int -> (Int -> m ()) -> m () rev n = flip VFSM.mapM_ (streamR 0 n) {-# INLINE rev #-} rev1 :: Monad m => Int -> (Int -> m ()) -> m () rev1 n = flip VFSM.mapM_ (streamR 1 (n + 1)) {-# INLINE rev1 #-} streamStep :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int streamStep !l !r !d = VFSM.Stream step l where step x | x < r = return $ VFSM.Yield x (x + d) | otherwise = return VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] streamStep #-} encode32x2 :: Int -> Int -> Int encode32x2 x y = x .<<. 32 .|. y {-# INLINE encode32x2 #-} decode32x2 :: Int -> (Int, Int) decode32x2 xy = let !x = xy .>>>. 32 !y = xy .&. 0xffffffff in (x, y) {-# INLINE decode32x2 #-} fi :: Int -> Integer fi = fromIntegral {-# INLINE fi #-} fI :: Integer -> Int fI = fromInteger {-# INLINE fI #-} powModInt :: Int -> Int -> Int -> Int powModInt a n mo = fI $ GMP.powModInteger (fi a) (fi n) (fi mo) {-# INLINE powModInt #-} recipModInt :: Int -> Int -> Int recipModInt a mo = fI $ GMP.recipModInteger (fi a) (fi mo) data NTTRunner = NTTRunner { pNR :: !Int , gNR :: !Int , ipNR :: !Word , sesNR :: !(VU.Vector Int) , siesNR :: !(VU.Vector Int) } buildNTTRunner :: Int -> Int -> NTTRunner buildNTTRunner pNR gNR = NTTRunner{..} where ipNR = quot (complement 0) (fromIntegral pNR) + 1 ctz = countTrailingZeros (pNR - 1) !e = powModInt gNR ((pNR - 1) .>>. ctz) pNR !ie = recipModInt e pNR es = VU.reverse $ VU.iterateN (ctz - 1) (\x -> x *% x) e ies = VU.reverse $ VU.iterateN (ctz - 1) (\x -> x *% x) ie sesNR = VU.zipWith (*%) es $ VU.scanl' (*%) 1 ies siesNR = VU.zipWith (*%) ies $ VU.scanl' (*%) 1 es x *% y = x * y `rem` pNR addNR :: NTTRunner -> Int -> Int -> Int addNR (NTTRunner (I# m#) _ _ _ _) (I# x#) (I# y#) = case x# +# y# of z# -> I# (z# -# ((z# >=# m#) *# m#)) {-# INLINE addNR #-} subNR :: NTTRunner -> Int -> Int -> Int subNR (NTTRunner (I# m#) _ _ _ _) (I# x#) (I# y#) = case x# -# y# of z# -> I# (z# +# ((z# <# 0#) *# m#)) {-# INLINE subNR #-} mulNR :: NTTRunner -> Int -> Int -> Int mulNR (NTTRunner (I# m0#) _ (W# im#) _ _) (I# x#) (I# y#) = case timesWord# (int2Word# x#) (int2Word# y#) of z# -> case timesWord2# z# im# of (# q#, _ #) -> case minusWord# z# (timesWord# q# m#) of v# | isTrue# (geWord# v# m#) -> I# (word2Int# (plusWord# v# m#)) | otherwise -> I# (word2Int# v#) where m# = int2Word# m0# {-# INLINE mulNR #-} butterfly :: NTTRunner -> VUM.STVector s Int -> ST s () butterfly nr@NTTRunner{..} mvec = do flip VFSM.mapM_ (stream 1 (h + 1)) $ \ph -> do let !w = 1 .<<. (ph - 1) !p = 1 .<<. (h - ph) void $ VFSM.foldlM' (\acc s -> do let offset = s .<<. (h - ph + 1) flip VFSM.mapM_ (stream offset (offset + p)) $ \i -> do l <- VUM.unsafeRead mvec i r <- mulNR nr acc <$!> VUM.unsafeRead mvec (i + p) VUM.unsafeWrite mvec (i + p) $ subNR nr l r VUM.unsafeWrite mvec i $ addNR nr l r return $! mulNR nr acc $ VU.unsafeIndex siesNR (countTrailingZeros (complement s)) ) 1 (stream 0 w) where n = VUM.length mvec !h = head [i | i <- [0 ..], n <= 1 .<<. i] {-# INLINE butterfly #-} invButterfly :: NTTRunner -> VUM.STVector s Int -> ST s () invButterfly nr@NTTRunner{..} mvec = void $ do flip VFSM.mapM_ (streamR 1 (h + 1)) $ \ph -> do let !w = 1 .<<. (ph - 1) !p = 1 .<<. (h - ph) VFSM.foldlM' (\acc s -> do let offset = s .<<. (h - ph + 1) flip VFSM.mapM_ (stream offset (offset + p)) $ \i -> do l <- VUM.unsafeRead mvec i r <- VUM.unsafeRead mvec (i + p) VUM.unsafeWrite mvec (i + p) $ mulNR nr acc (pNR + l - r) VUM.unsafeWrite mvec i $ addNR nr l r return $! mulNR nr acc $ VU.unsafeIndex sesNR (countTrailingZeros (complement s)) ) 1 (stream 0 w) where n = VUM.length mvec !h = head [i | i <- [0..], n <= 1 .<<. i] {-# INLINE invButterfly #-} growToPowerOfTwo :: VU.Vector Int -> VU.Vector Int growToPowerOfTwo v | VU.null v = VU.singleton 0 | VU.length v == 1 = v | n <- (-1) .>>>. (countTrailingZeros (VU.length v - 1)) + 1 = v VU.++ VU.replicate (n - VU.length v) 0 ntt :: Int -> Int -> VU.Vector Int -> VU.Vector Int ntt p g = VU.modify (butterfly nr) where nr = buildNTTRunner p g intt :: Int -> Int -> VU.Vector Int -> VU.Vector Int intt p g f = VU.map (mulNR nr invn) $ VU.modify (invButterfly nr) f where nr = buildNTTRunner p g !invn = recipModInt (VU.length f) p convolute :: Int -> Int -> VU.Vector Int -> VU.Vector Int -> VU.Vector Int convolute p g xs ys = VU.create $ do mxs <- VUM.replicate len 0 VU.unsafeCopy (VUM.take n mxs) xs butterfly nr mxs mys <- VUM.replicate len 0 VU.unsafeCopy (VUM.take m mys) ys butterfly nr mys rep len $ \i -> do yi <- VUM.unsafeRead mys i VUM.unsafeModify mxs (mulNR nr yi) i invButterfly nr mxs rep (n + m - 1) $ \i -> do VUM.unsafeModify mxs (mulNR nr ilen) i return $ VUM.take (n + m - 1) mxs where !nr = buildNTTRunner p g n = VU.length xs m = VU.length ys !h = head [i | i <- [0..], n + m - 1 <= 1 .<<. i] !len = 1 .<<. h !ilen = recipModInt len p multiply :: VU.Vector Int -> VU.Vector Int -> Int -> VU.Vector Int multiply ax bx mo = ret where m1 = 167772161 m2 = 469762049 m3 = 1224736769 g = 3 x = convolute m1 g ax bx y = convolute m2 g ax bx z = convolute m3 g ax bx !m1invm2 = recipModInt m1 m2 !m12invm3 = recipModInt (m1 * m2) m3 !m12mod = m1 * m2 `mod` mo !v1 = VU.zipWith func1 y x func1 !yi !xi = let c = (yi - xi) * m1invm2 `mod` m2 in if c < 0 then c + m2 else c !v2 = VU.zipWith3 func2 z x v1 func2 !zi !xi !v1i = let d = (zi - (xi + m1 * v1i) `mod` m3) * m12invm3 `mod` m3 in if d < 0 then d + m3 else d !ret = VU.zipWith3 func3 x v1 v2 func3 !xi !v1i !v2i = let e = (xi + m1 * v1i + m12mod * v2i) `mod` mo in if e < 0 then e + mo else e main :: IO () main = do [l, m, n] <- map read . words <$> getLine as <- parseM l bs <- parseM m q <- readLn :: IO Int ax <- VUM.new 262144 bx <- VUM.new 262144 rep l $ \i -> VUM.unsafeWrite ax (as VU.! i - 1) (1 :: Int) rep m $ \i -> VUM.unsafeWrite bx (n - bs VU.! i) (1 :: Int) a <- VU.unsafeFreeze ax b <- VU.unsafeFreeze bx let c = convolute 998244353 3 a b putStr . unlines . map show . VU.toList . VU.drop (n - 1) $ VU.take (n + q - 1) c