結果

問題 No.3 ビットすごろく
ユーザー stoqstoq
提出日時 2020-10-14 06:03:21
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 27 ms / 5,000 ms
コード長 3,783 bytes
コンパイル時間 1,905 ms
コンパイル使用メモリ 211,104 KB
最終ジャッジ日時 2025-01-15 07:14:31
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-9;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename T>
struct dijkstra
{
int V;
T INF;
struct edge
{
int to;
T cost;
};
vector<vector<edge>> E;
vector<T> d;
using pt = pair<T, int>;
dijkstra(int V_) : V(V_)
{
E.resize(V);
d.resize(V);
if (is_same<int, T>::value)
INF = 2e9;
else
INF = 8e18;
}
void add_E(int a, int b, T c = 1, bool directed = true)
{
E[a].emplace_back(edge{b, c});
if (!directed)
E[b].emplace_back(edge{a, c});
}
void calc(int s)
{
priority_queue<pt, vector<pt>, greater<pt>> que;
fill(d.begin(), d.end(), INF);
que.emplace(T(0), s);
d[s] = 0;
while (!que.empty())
{
pt p = que.top();
que.pop();
int v = p.second;
if (d[v] < p.first)
continue;
for (auto &&e : E[v])
{
if (d[e.to] > d[v] + e.cost)
{
d[e.to] = d[v] + e.cost;
que.emplace(d[e.to], e.to);
}
}
}
}
};
void solve()
{
int n;
cin >> n;
dijkstra<int> ds(n);
rep(i, n)
{
int t = __builtin_popcount(i + 1);
if (i - t >= 0)
ds.add_E(i, i - t, 1);
if (i + t < n)
ds.add_E(i, i + t, 1);
}
ds.calc(0);
cout << (ds.d[n - 1] == ds.INF ? -1 : ds.d[n - 1] + 1) << "\n";
}
int main()
{
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0