結果

問題 No.1259 スイッチ
ユーザー Kiri8128Kiri8128
提出日時 2020-10-16 22:01:48
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 98 ms / 2,000 ms
コード長 2,772 bytes
コンパイル時間 199 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 87,936 KB
最終ジャッジ日時 2024-07-20 21:45:49
合計ジャッジ時間 6,266 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 43 ms
52,608 KB
testcase_01 AC 42 ms
52,480 KB
testcase_02 AC 42 ms
52,608 KB
testcase_03 AC 43 ms
52,736 KB
testcase_04 AC 42 ms
52,224 KB
testcase_05 AC 42 ms
52,736 KB
testcase_06 AC 42 ms
52,480 KB
testcase_07 AC 43 ms
52,224 KB
testcase_08 AC 42 ms
52,608 KB
testcase_09 AC 42 ms
52,736 KB
testcase_10 AC 74 ms
73,472 KB
testcase_11 AC 88 ms
81,920 KB
testcase_12 AC 90 ms
75,392 KB
testcase_13 AC 63 ms
67,712 KB
testcase_14 AC 69 ms
70,912 KB
testcase_15 AC 63 ms
67,200 KB
testcase_16 AC 80 ms
77,952 KB
testcase_17 AC 68 ms
70,784 KB
testcase_18 AC 98 ms
87,936 KB
testcase_19 AC 84 ms
80,128 KB
testcase_20 AC 74 ms
73,856 KB
testcase_21 AC 95 ms
85,504 KB
testcase_22 AC 61 ms
66,176 KB
testcase_23 AC 83 ms
79,744 KB
testcase_24 AC 75 ms
75,008 KB
testcase_25 AC 74 ms
74,496 KB
testcase_26 AC 87 ms
82,432 KB
testcase_27 AC 81 ms
78,336 KB
testcase_28 AC 74 ms
74,368 KB
testcase_29 AC 81 ms
78,336 KB
testcase_30 AC 72 ms
72,192 KB
testcase_31 AC 79 ms
76,800 KB
testcase_32 AC 67 ms
68,992 KB
testcase_33 AC 92 ms
82,688 KB
testcase_34 AC 79 ms
75,264 KB
testcase_35 AC 80 ms
77,824 KB
testcase_36 AC 77 ms
76,032 KB
testcase_37 AC 76 ms
74,752 KB
testcase_38 AC 76 ms
74,880 KB
testcase_39 AC 87 ms
81,152 KB
testcase_40 AC 90 ms
81,792 KB
testcase_41 AC 82 ms
78,208 KB
testcase_42 AC 89 ms
82,560 KB
testcase_43 AC 72 ms
73,216 KB
testcase_44 AC 86 ms
80,768 KB
testcase_45 AC 89 ms
83,328 KB
testcase_46 AC 72 ms
72,576 KB
testcase_47 AC 90 ms
83,328 KB
testcase_48 AC 68 ms
70,656 KB
testcase_49 AC 88 ms
81,920 KB
testcase_50 AC 86 ms
78,208 KB
testcase_51 AC 66 ms
67,840 KB
testcase_52 AC 89 ms
81,920 KB
testcase_53 AC 67 ms
69,376 KB
testcase_54 AC 88 ms
81,792 KB
testcase_55 AC 63 ms
66,176 KB
testcase_56 AC 80 ms
74,240 KB
testcase_57 AC 93 ms
80,128 KB
testcase_58 AC 74 ms
73,472 KB
testcase_59 AC 83 ms
77,952 KB
testcase_60 AC 90 ms
83,328 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def gcd(a, b):
    while b: a, b = b, a % b
    return a
def isPrimeMR(n):
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

def divisors(N):
    pf = primeFactor(N)
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = []
        for i in range(pf[p]+1):
            for r in ret_prev:
                ret.append(r * (p ** i))
    return sorted(ret)

N, K, M = map(int, input().split())
nn = N
P = 10 ** 9 + 7

fa = [1] * (nn+1)
fainv = [1] * (nn+1)
for i in range(nn):
    fa[i+1] = fa[i] * (i+1) % P
fainv[-1] = pow(fa[-1], P-2, P)
for i in range(nn)[::-1]:
    fainv[i] = fainv[i+1] * (i+1) % P

po = [1] * (nn+1)
for i in range(N):
    po[i+1] = po[i] * N % P

C = lambda a, b: fa[a] * fainv[b] % P * fainv[a-b] % P if 0 <= b <= a else 0
def calc(d):
    return fa[N-1] * fainv[N-d] % P * po[N-d] if d <= N else 0

s = 0
for d in divisors(K):
    s = (s + calc(d)) % P

print(s if M == 1 else (po[N] - s) * pow(N-1, P-2, P) % P)
0