結果
問題 | No.1259 スイッチ |
ユーザー | Kiri8128 |
提出日時 | 2020-10-16 22:01:48 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 98 ms / 2,000 ms |
コード長 | 2,772 bytes |
コンパイル時間 | 199 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 87,936 KB |
最終ジャッジ日時 | 2024-07-20 21:45:49 |
合計ジャッジ時間 | 6,266 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
52,608 KB |
testcase_01 | AC | 42 ms
52,480 KB |
testcase_02 | AC | 42 ms
52,608 KB |
testcase_03 | AC | 43 ms
52,736 KB |
testcase_04 | AC | 42 ms
52,224 KB |
testcase_05 | AC | 42 ms
52,736 KB |
testcase_06 | AC | 42 ms
52,480 KB |
testcase_07 | AC | 43 ms
52,224 KB |
testcase_08 | AC | 42 ms
52,608 KB |
testcase_09 | AC | 42 ms
52,736 KB |
testcase_10 | AC | 74 ms
73,472 KB |
testcase_11 | AC | 88 ms
81,920 KB |
testcase_12 | AC | 90 ms
75,392 KB |
testcase_13 | AC | 63 ms
67,712 KB |
testcase_14 | AC | 69 ms
70,912 KB |
testcase_15 | AC | 63 ms
67,200 KB |
testcase_16 | AC | 80 ms
77,952 KB |
testcase_17 | AC | 68 ms
70,784 KB |
testcase_18 | AC | 98 ms
87,936 KB |
testcase_19 | AC | 84 ms
80,128 KB |
testcase_20 | AC | 74 ms
73,856 KB |
testcase_21 | AC | 95 ms
85,504 KB |
testcase_22 | AC | 61 ms
66,176 KB |
testcase_23 | AC | 83 ms
79,744 KB |
testcase_24 | AC | 75 ms
75,008 KB |
testcase_25 | AC | 74 ms
74,496 KB |
testcase_26 | AC | 87 ms
82,432 KB |
testcase_27 | AC | 81 ms
78,336 KB |
testcase_28 | AC | 74 ms
74,368 KB |
testcase_29 | AC | 81 ms
78,336 KB |
testcase_30 | AC | 72 ms
72,192 KB |
testcase_31 | AC | 79 ms
76,800 KB |
testcase_32 | AC | 67 ms
68,992 KB |
testcase_33 | AC | 92 ms
82,688 KB |
testcase_34 | AC | 79 ms
75,264 KB |
testcase_35 | AC | 80 ms
77,824 KB |
testcase_36 | AC | 77 ms
76,032 KB |
testcase_37 | AC | 76 ms
74,752 KB |
testcase_38 | AC | 76 ms
74,880 KB |
testcase_39 | AC | 87 ms
81,152 KB |
testcase_40 | AC | 90 ms
81,792 KB |
testcase_41 | AC | 82 ms
78,208 KB |
testcase_42 | AC | 89 ms
82,560 KB |
testcase_43 | AC | 72 ms
73,216 KB |
testcase_44 | AC | 86 ms
80,768 KB |
testcase_45 | AC | 89 ms
83,328 KB |
testcase_46 | AC | 72 ms
72,576 KB |
testcase_47 | AC | 90 ms
83,328 KB |
testcase_48 | AC | 68 ms
70,656 KB |
testcase_49 | AC | 88 ms
81,920 KB |
testcase_50 | AC | 86 ms
78,208 KB |
testcase_51 | AC | 66 ms
67,840 KB |
testcase_52 | AC | 89 ms
81,920 KB |
testcase_53 | AC | 67 ms
69,376 KB |
testcase_54 | AC | 88 ms
81,792 KB |
testcase_55 | AC | 63 ms
66,176 KB |
testcase_56 | AC | 80 ms
74,240 KB |
testcase_57 | AC | 93 ms
80,128 KB |
testcase_58 | AC | 74 ms
73,472 KB |
testcase_59 | AC | 83 ms
77,952 KB |
testcase_60 | AC | 90 ms
83,328 KB |
ソースコード
def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(N): pf = primeFactor(N) ret = [1] for p in pf: ret_prev = ret ret = [] for i in range(pf[p]+1): for r in ret_prev: ret.append(r * (p ** i)) return sorted(ret) N, K, M = map(int, input().split()) nn = N P = 10 ** 9 + 7 fa = [1] * (nn+1) fainv = [1] * (nn+1) for i in range(nn): fa[i+1] = fa[i] * (i+1) % P fainv[-1] = pow(fa[-1], P-2, P) for i in range(nn)[::-1]: fainv[i] = fainv[i+1] * (i+1) % P po = [1] * (nn+1) for i in range(N): po[i+1] = po[i] * N % P C = lambda a, b: fa[a] * fainv[b] % P * fainv[a-b] % P if 0 <= b <= a else 0 def calc(d): return fa[N-1] * fainv[N-d] % P * po[N-d] if d <= N else 0 s = 0 for d in divisors(K): s = (s + calc(d)) % P print(s if M == 1 else (po[N] - s) * pow(N-1, P-2, P) % P)