結果
問題 | No.1259 スイッチ |
ユーザー |
![]() |
提出日時 | 2020-10-16 22:01:48 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 98 ms / 2,000 ms |
コード長 | 2,772 bytes |
コンパイル時間 | 199 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 87,936 KB |
最終ジャッジ日時 | 2024-07-20 21:45:49 |
合計ジャッジ時間 | 6,266 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 61 |
ソースコード
def gcd(a, b):while b: a, b = b, a % breturn adef isPrimeMR(n):d = n - 1d = d // (d & -d)L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]for a in L:t = dy = pow(a, t, n)if y == 1: continuewhile y != n - 1:y = y * y % nif y == 1 or t == n - 1: return 0t <<= 1return 1def findFactorRho(n):m = 1 << n.bit_length() // 8for c in range(1, 99):f = lambda x: (x * x + c) % ny, r, q, g = 2, 1, 1, 1while g == 1:x = yfor i in range(r):y = f(y)k = 0while k < r and g == 1:ys = yfor i in range(min(m, r - k)):y = f(y)q = q * abs(x - y) % ng = gcd(q, n)k += mr <<= 1if g == n:g = 1while g == 1:ys = f(ys)g = gcd(abs(x - ys), n)if g < n:if isPrimeMR(g): return gelif isPrimeMR(n // g): return n // greturn findFactorRho(g)def primeFactor(n):i = 2ret = {}rhoFlg = 0while i * i <= n:k = 0while n % i == 0:n //= ik += 1if k: ret[i] = ki += i % 2 + (3 if i % 3 == 1 else 1)if i == 101 and n >= 2 ** 20:while n > 1:if isPrimeMR(n):ret[n], n = 1, 1else:rhoFlg = 1j = findFactorRho(n)k = 0while n % j == 0:n //= jk += 1ret[j] = kif n > 1: ret[n] = 1if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}return retdef divisors(N):pf = primeFactor(N)ret = [1]for p in pf:ret_prev = retret = []for i in range(pf[p]+1):for r in ret_prev:ret.append(r * (p ** i))return sorted(ret)N, K, M = map(int, input().split())nn = NP = 10 ** 9 + 7fa = [1] * (nn+1)fainv = [1] * (nn+1)for i in range(nn):fa[i+1] = fa[i] * (i+1) % Pfainv[-1] = pow(fa[-1], P-2, P)for i in range(nn)[::-1]:fainv[i] = fainv[i+1] * (i+1) % Ppo = [1] * (nn+1)for i in range(N):po[i+1] = po[i] * N % PC = lambda a, b: fa[a] * fainv[b] % P * fainv[a-b] % P if 0 <= b <= a else 0def calc(d):return fa[N-1] * fainv[N-d] % P * po[N-d] if d <= N else 0s = 0for d in divisors(K):s = (s + calc(d)) % Pprint(s if M == 1 else (po[N] - s) * pow(N-1, P-2, P) % P)