結果

問題 No.1261 数字集め
ユーザー tokusakurai
提出日時 2020-10-17 16:56:57
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,475 ms / 8,000 ms
コード長 4,100 bytes
コンパイル時間 2,366 ms
コンパイル使用メモリ 197,272 KB
最終ジャッジ日時 2025-01-15 11:00:11
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 94
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define elif else if
#define sp(x) fixed << setprecision(x)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
const double pi = acos(-1.0);
const double EPS = 1e-10;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};
template<int mod>
struct Mod_Int{
ll x;
Mod_Int() : x(0) {}
Mod_Int(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
Mod_Int &operator += (const Mod_Int &p){
x = (x + p.x) % mod;
return *this;
}
Mod_Int &operator -= (const Mod_Int &p){
x = (x + mod - p.x) % mod;
return *this;
}
Mod_Int &operator *= (const Mod_Int &p){
x = (x * p.x) % mod;
return *this;
}
Mod_Int &operator /= (const Mod_Int &p){
*this *= p.inverse();
return *this;
}
Mod_Int &operator ++ () {return *this += Mod_Int(1);}
Mod_Int operator ++ (int){
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator -- () {return *this -= Mod_Int(1);}
Mod_Int operator -- (int){
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator - () const {return Mod_Int(-x);}
Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}
Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}
Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}
Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}
bool operator == (const Mod_Int &p) const {return x == p.x;}
bool operator != (const Mod_Int &p) const {return x != p.x;}
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod-2);
}
Mod_Int pow(ll k) const{
Mod_Int now = *this, ret = 1;
while(k){
if(k&1) ret *= now;
now *= now, k >>= 1;
}
return ret;
}
friend ostream &operator << (ostream &os, const Mod_Int &p){
return os << p.x;
}
friend istream &operator >> (istream &is, Mod_Int &p){
ll a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
const int MAX = 1000000;
int A[MAX+1];
mint iv[MAX+1], pw[MAX+1];
mint inv(int a){
if(a > 0) return iv[a];
else return iv[abs(a)]*(-1);
}
mint calc(int i, int j, int k){
int a = A[i], b = A[j], c = A[k];
return (pw[a]*(b-c)+pw[b]*(c-a)+pw[c]*(a-b))*inv(a-b)*inv(b-c)*inv(c-a);
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int N, M;
cin >> N >> M;
rep2(i, 2, N){
cin >> A[i];
A[i]--;
}
bool st[N+1], en[N+1];
fill(st, st+N+1, false), fill(en, en+N+1, false);
rep2(i, 2, N-1){
st[i] = true, en[i] = (N%i == 0);
}
rep2(i, 1, MAX) iv[i] = mint(i).inverse();
rep2(i, 1, MAX) pw[i] = mint(i).pow(M-1);
vector<int> es[N+1];
mint ans = 0;
rep2(i, 2, N-1){
for(int j = i+i; j <= N; j += i){
es[j].pb(i);
if(st[i] && en[j]) ans -= calc(i, j, N);
}
}
cout << ans << '\n';
int Q;
cin >> Q;
while(Q--){
int x, y; cin >> x >> y;
if(y < N){
es[y].pb(x);
if(st[x] && en[y]) ans -= calc(x, y, N);
}
else{
en[x] = true;
for(auto &e: es[x]){
if(st[e]) ans -= calc(e, x, N);
}
}
cout << ans << '\n';
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0