結果
問題 | No.244 ★1のグラフの問題 |
ユーザー | marurunn11 |
提出日時 | 2020-10-20 01:16:36 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 20,673 bytes |
コンパイル時間 | 4,416 ms |
コンパイル使用メモリ | 230,816 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-21 08:12:45 |
合計ジャッジ時間 | 4,196 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include "bits/stdc++.h" #ifdef _MSC_VER #include <intrin.h> //gcc上ではこれがあると動かない。__popcnt, umul128 等用のincludeファイル。 #define __builtin_popcount __popcnt #define __builtin_popcountll __popcnt64 #pragma warning(disable : 4996) #pragma intrinsic(_umul128) #endif //#include <atcoder/all> //using namespace atcoder; //#include <boost/multiprecision/cpp_int.hpp> //#include <boost/multiprecision/cpp_dec_float.hpp> using namespace std; typedef long long ll; typedef long double ld; #define int long long #define double long double #define LL128 boost::multiprecision::int128_t #define LL boost::multiprecision::cpp_int #define LD100 boost::multiprecision::cpp_dec_float_100 #define rep(i, n) for(long long i = 0; i < (n); i++) #define sqrt(d) pow((ld) (d), 0.50) #define PII pair<int, int> #define MP make_pair #define PB push_back #define ALL(v) v.begin(), v.end() const int INF = std::numeric_limits<int>::max() / 2 - 100000000; const long long INF2 = std::numeric_limits<long long>::max() / 2 - 100000000; const ld pi = acos(-1); //constexpr int MOD = 1000000007; //1e9 + 7 //constexpr int MOD = 1000000009; //1e9 + 9 constexpr int MOD = 998244353; // 7 * 17 * 2^23 + 1 long long my_gcd(long long a, long long b) { if (b == 0) return a; return my_gcd(b, a % b); } // ax + by = gcd(a, b) を解く。返り値は、gcd(a, b)。 long long my_gcd_ext(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long tempo = my_gcd_ext(b, a % b, y, x); //bx' + ry' = gcd(a, b) → (qb + r)x + by = gcd(a, b) に戻さないといけない。// (r = a % b) //b(x' - qy') + (bq + r)y' = gcd(a, b) と同値変形できるから、 // x = y', y = x' - qy' y -= (a / b) * x; return tempo; } //M を法として、a の逆元を返す。但し gcd(a, M) = 1。 long long my_invmod(long long a, long long M) { long long x = 0, y = 0; long long memo = my_gcd_ext(a, M, x, y); assert(memo == 1LL); x %= M; if (x < 0) x += M; return x; } //繰り返し2乗法 //N^aの、Mで割った余りを求める。 ll my_pow(ll N, ll a, ll M) { ll tempo; if (a == 0) { return 1; } else { if (a % 2 == 0) { tempo = my_pow(N, a / 2, M); return (tempo * tempo) % M; } else { tempo = my_pow(N, a - 1, M); return (tempo * N) % M; } } } ll my_pow(ll N, ll a) { ll tempo; if (a == 0) { return 1; } else { if (a % 2 == 0) { tempo = my_pow(N, a / 2); return (tempo * tempo); } else { tempo = my_pow(N, a - 1); return (tempo * N); } } } //N_C_a を M で割った余り ll my_combination(ll N, ll a, ll M) { if (N < a) return 0; ll answer = 1; rep(i, a) { answer *= (N - i); answer %= M; } rep(i, a) { answer *= my_pow(i + 1, M - 2, M); answer %= M; } return answer; } //N_C_i を M で割った余りを、v.at(i) に代入する。 void my_combination_table(ll N, ll M, vector<ll>& v) { v.assign(N + 1, 1); for (ll i = 1; i <= N; i++) { v.at(i) = v.at(i - 1) * (N - (i - 1LL)); v.at(i) %= M; v.at(i) *= my_invmod(i, M); v.at(i) %= M; } } //(N + i)_C_N を M で割った余りを、v.at(i) に代入する。(v のサイズに依存) void my_combination_table2(ll N, ll M, vector<ll>& v) { v.at(0) = 1; for (ll i = 1; i < (ll)v.size(); i++) { v.at(i) = v.at(i - 1) * (N + i); v.at(i) %= M; v.at(i) *= my_invmod(i, M); v.at(i) %= M; } } //階乗。x ! まで計算する。結果は dp に保存する。20 ! = 2.43e18 まで long long に入る。 ll factorial(ll x, vector<ll>& dp) { if ((ll)dp.size() <= x) { int n = dp.size(); rep(i, x + 1 - n) { dp.push_back(0); } } if (x == 0) return dp.at(x) = 1; if (dp.at(x) != -1 && dp.at(x) != 0) return dp.at(x); return dp.at(x) = x * factorial(x - 1, dp); } //階乗の M で割った余り。x ! まで計算する。結果は dp に保存する。 ll factorial2(ll x, ll M, vector<ll>& dp) { if ((ll)dp.size() <= x) { int n = dp.size(); rep(i, x + 1 - n) { dp.push_back(0); } } if (x == 0) return dp.at(x) = 1; if (dp.at(x) != -1 && dp.at(x) != 0) return dp.at(x); ll tempo = (x * factorial2(x - 1, M, dp)); tempo %= M; return dp.at(x) = tempo; } //階乗の mod M での逆元 (M: prime)。x ! まで計算する。結果は dp に保存する。 ll factorial_inverse(ll x, ll M, vector<ll>& dp) { if ((ll)dp.size() <= x) { int n = dp.size(); rep(i, x + 1 - n) { dp.push_back(0); } } if (x == 0) return dp.at(x) = 1; if (dp.at(x) != -1 && dp.at(x) != 0) return dp.at(x); return dp.at(x) = (my_pow(x, M - 2, M) * factorial_inverse(x - 1, M, dp)) % M; } //N_C_a を M で割った余り。何度も呼ぶ用。 ll my_combination2(ll N, ll a, ll M, vector<ll>& dp_factorial, vector<ll>& dp_factorial_inverse) { if ((ll)dp_factorial.size() <= N) { factorial2(N, M, dp_factorial); } if ((ll)dp_factorial_inverse.size() <= N) { factorial_inverse(N, M, dp_factorial_inverse); } if (N < a) return 0; ll answer = 1; answer *= dp_factorial.at(N); answer %= M; answer *= dp_factorial_inverse.at(N - a); answer %= M; answer *= dp_factorial_inverse.at(a); answer %= M; return answer; } // base を底としたときの、n の i桁目を、v.at(i) に入れる。(桁数は n に応じて自動で設定する。) void ll_to_vector(signed base, long long n, vector<signed>& v) { long long tempo = n; long long tempo2 = n; signed n_digit = 1; while (tempo2 >= base) { tempo2 /= base; n_digit++; } v.assign(n_digit, 0); // v のサイズを適切に調整する場合。 // n_digit = v.size(); // v のサイズをそのままにする場合。 for (signed i = 0; i < n_digit; i++) { long long denominator = my_pow(base, n_digit - 1 - i); v.at(i) = tempo / denominator; tempo -= v.at(i) * denominator; } } int char_to_int(char c) { switch (c) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; default: return 0; } } //エラトステネスの篩で、prime で ないところに false を入れる。O(n loglog n) void prime_judge(vector<bool>& prime_or_not) { prime_or_not.assign(prime_or_not.size(), true); prime_or_not.at(0) = false; prime_or_not.at(1) = false; long long n = prime_or_not.size() - 1; for (long long i = 2; 2 * i <= n; i++) { prime_or_not.at(2 * i) = false; } for (long long i = 3; i * i <= n; i += 2) { //ここからは奇数のみ探索。i の倍数に false を入れる。 if (prime_or_not.at(i)) { long long j = i * i; // i^2 未満の i の倍数には、すでに false が入っているはず。 while (j < n + 1) { prime_or_not.at(j) = false; j += 2 * i; } } } }; // n + 1 の サイズの vector を返す。res.at(i) には、i の 1 以外で最小の約数を入れる。res.at(i) == i なら i は素数。 // 2e8 なら、3.2 秒程度で終わる。たぶん、prime_judge より 3倍弱遅い。 vector<long long> sieve(long long n) { n++; // n まで判定する。配列サイズは +1。 vector<long long> res(n, 0); for (long long i = 1; i < n; i++) { if (i % 2 == 0) res.at(i) = 2; // 偶数をあらかじめ処理。 else res.at(i) = i; } for (long long i = 3; i * i < n; i += 2) { //ここからは奇数のみ探索。i の倍数に i を入れる。 if (res.at(i) == i) { long long j = i * i; // i^2 未満の i の倍数には、すでに最小の約数が入っているはず。 while (j < n) { if (res.at(j) == j) res.at(j) = i; j += 2 * i; } } } return res; }; //O (sqrt(n)) で素数判定する用。 bool is_prime(long long N) { if (N == 1 || N == 0) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; if (N % 3 == 0) return false; for (long long i = 1; (6 * i + 1) * (6 * i + 1) <= N; ++i) { if (N % (6 * i + 1) == 0) return false; } for (long long i = 0; (6 * i + 5) * (6 * i + 5) <= N; ++i) { if (N % (6 * i + 5) == 0) return false; } return true; } //素因数分解を O(sqrt(N)) で行うための関数。 map<ll, ll> divide_to_prime(int target) { map<ll, ll> res; //sqrt(target) まで調べる。 ll upper_lim = ceil(sqrt(target)); vector<bool> prime_or_not(upper_lim + 3, true); if (upper_lim < 20) prime_or_not.assign(25, true); prime_or_not.at(0) = false; prime_or_not.at(1) = false; prime_judge(prime_or_not); ll tempo = target; for (int i = 1; i * i <= target; i++) { if (prime_or_not.at(i)) { while (tempo % i == 0) { tempo /= i; res[i]++; } } if (tempo == 1) break; //別に必要はない。 } if (tempo != 1) res[tempo]++; //sqrt(target) より大きな素因数は高々1つしかない。 return res; } //関数 sieve で得た、vector min_factor を持ってるときに、素因数分解を高速で行うための関数。 map<long long, long long> divide_to_prime2(long long target, vector<long long>& min_factor) { map<long long, long long> res; if (min_factor.empty() || (long long)min_factor.size() - 1 < target) min_factor = sieve(target); while (target > 1) { res[min_factor[target]]++; target /= min_factor[target]; } return res; } //約数全列挙を O(sqrt(N)) で行うための関数。 vector<long long> count_dividers(long long target) { vector <long long> dividers, tempo; long long i = 1; while (i * i < target + 1) { if (target % i == 0) { dividers.push_back(i); if (i < target / i) tempo.push_back(target / i); // if節がないと、平方数の時、sqrt(target) がダブルカウントされる。 } i++; } for (long long j = 0; j < (long long)tempo.size(); j++) { dividers.push_back(tempo.at(tempo.size() - 1 - j)); } return dividers; } //関数 sieve で得た、vector min_factor を持ってるときに、約数全列挙を高速で行うための関数。 vector<long long> count_dividers2(long long target, vector<long long>& min_factor) { vector <long long> dividers = { 1 }; map<long long, long long> memo = divide_to_prime2(target, min_factor); for (auto&& iter = memo.begin(); iter != memo.end(); iter++) { vector <long long> tempo = dividers; for (long long k = 0; k < (long long)tempo.size(); k++) { long long times = 1; for (long long j = 1; j <= (iter->second); j++) { times *= iter->first; dividers.push_back(tempo[k] * times); } } } sort(dividers.begin(), dividers.end()); //sortしないと小さい順に並ばないが、必要ないなら消しても良い。 return dividers; } void BFS_labyrinth(queue<pair<int, int>>& que, vector<vector<int>>& dist, int& area) { int H = dist.size(); int W = dist.at(0).size(); while (!que.empty()) { int h, w; pair<int, int> tempo = que.front(); que.pop(); h = tempo.first; w = tempo.second; //cout << temp_i << " " << temp_j << endl; for (int dh = -1; dh <= 1; dh++) { for (int dw = -1; dw <= 1; dw++) { if (h + dh < 0 || H <= h + dh) continue; //範囲外 if (w + dw < 0 || W <= w + dw) continue; //範囲外 if (dh == 0 && dw == 0) continue; //動いていない if (dh * dw != 0) continue; //右上など。八近傍の場合は消す。 if (dist.at(h + dh).at(w + dw) != -1) continue; //行けない領域に、既に INF などが代入されている場合はこの条件だけで ok dist.at(h + dh).at(w + dw) = dist.at(h).at(w) + 1; que.push(make_pair(h + dh, w + dw)); } } //何か所も領域がある場合だけ必要 if (que.empty()) { rep(i, H) { rep(j, W) { if (dist.at(i).at(j) == -1) { que.push(make_pair(i, j)); dist.at(i).at(j) = 0; area++; break; } } if (!que.empty()) break; } } } } void BFS01_labyrinth(deque<pair<int, int>>& que, vector<vector<int>>& dist, vector<vector<int>>& cost) { int H = dist.size(); int W = dist.at(0).size(); while (!que.empty()) { int h, w; pair<int, int> tempo = que.front(); que.pop_front(); h = tempo.first; w = tempo.second; //cout << temp_i << " " << temp_j << endl; for (int dh = -1; dh <= 1; dh++) { for (int dw = -1; dw <= 1; dw++) { if (h + dh < 0 || H <= h + dh) continue; //範囲外 if (w + dw < 0 || W <= w + dw) continue; //範囲外 if (dh == 0 && dw == 0) continue; //動いていない if (dh * dw != 0) continue; //右上など。八近傍の場合は消す。 if (dist.at(h + dh).at(w + dw) != -1) continue; //行けない領域に、既に INF などが代入されている場合はこの条件だけで ok dist.at(h + dh).at(w + dw) = dist.at(h).at(w) + cost.at(h + dh).at(w + dw); if (cost.at(h + dh).at(w + dw) == 0) {//コストが低い場合 que.push_front(make_pair(h + dh, w + dw)); } else {//コストが高い場合 que.push_back(make_pair(h + dh, w + dw)); } } } } } void dfs(const vector<vector<int>>& G, vector<bool>& seen, int v) { seen.at(v) = true; for (int next_v : G.at(v)) { if (seen.at(next_v)) continue; dfs(G, seen, next_v); } } class edge { public: int to; int cost; }; void dijkstra(int s, const vector<vector<edge>> G, vector<int>& dist) { int V = dist.size(); //頂点数 dist.assign(V, INF); //first が最短距離、second が頂点番号。 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; dist.at(s) = 0; que.push(make_pair(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist.at(v) < p.first) continue; //最短距離がすでに更新されているので無視。 for (int i = 0; i < (int)G.at(v).size(); i++) { edge e = G.at(v).at(i); //for (auto&& e : G.at(v)) { // ← なぜか、やや遅いので。 if (dist.at(e.to) > dist.at(v) + e.cost) { dist.at(e.to) = dist.at(v) + e.cost; que.push(make_pair(dist.at(e.to), e.to)); } } } } class Edge { public: int from; int to; int cost; }; vector<int> BellmanFord(const int s, vector<int>& dist, vector<Edge> G) { const int V = dist.size(); vector<int> res; //負閉路内の点を入れる。 //初期化 dist.assign(V, INF); dist.at(s) = 0; for (int i = 0; i < V; i++) { for (int j = 0; j < (int)G.size(); j++) { Edge e = G.at(j); if (dist[e.from] != INF && dist[e.to] > dist[e.from] + e.cost) { //移動した後のコストが小さいと、頂点のコストを更新 dist[e.to] = dist[e.from] + e.cost; if (i == V - 1) { //頂点の数と同じ回数ループすると、負の閉路があるのでループをぬける res.push_back(e.to); //return true; } } } } return res; //return false; } const int Vmax2 = 1; int dp_warshall[Vmax2][Vmax2]; //G.at(i).at(j) は i から j への移動コスト。隣接行列。 void warshall_floyd(const int V, const vector<vector<int>> G) { rep(i, V) { rep(j, V) { dp_warshall[i][j] = G.at(i).at(j); //初期化 } } rep(k, V) { rep(i, V) { rep(j, V) { dp_warshall[i][j] = min(dp_warshall[i][j], dp_warshall[i][k] + dp_warshall[k][j]); } } } } class UnionFind { public: vector<int> parent; vector<int> rank; vector<int> v_size; UnionFind(int N) : parent(N), rank(N, 0), v_size(N, 1) { rep(i, N) { parent[i] = i; } } int root(int x) { if (parent[x] == x) return x; return parent[x] = root(parent[x]); //経路圧縮 } void unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return; //xの根とyの根が同じなので、何もしない。 if (rank[rx] < rank[ry]) { parent[rx] = ry; v_size[ry] += v_size[rx]; } else { parent[ry] = rx; v_size[rx] += v_size[ry]; if (rank[rx] == rank[ry]) rank[rx]++; } } bool same(int x, int y) { return (root(x) == root(y)); } int count_tree() { int N = parent.size(); int res = 0; rep(i, N) { if (root(i) == i) res++; } return res; } int size(int x) { return v_size[root(x)]; } }; class wUnionFind { public: vector<int> parent; vector<int> diff_weight; //親との差分。 vector<int> rank; wUnionFind(int N) : parent(N), diff_weight(N, 0), rank(N, 0) { rep(i, N) { parent.at(i) = i; } } int root(int x) { if (parent.at(x) == x) return x; int r = root(parent.at(x)); diff_weight.at(x) += diff_weight.at(parent.at(x)); //累積和 return parent.at(x) = r; } //x の重みを出力する関数。 int weight(int x) { root(x); return diff_weight.at(x); } //weight.at(y) - weight.at(x) == w となるようにする。 bool unite(int x, int y, int w) { int rx = root(x); int ry = root(y); int diff_weight_to_ry_from_rx = w + weight(x) - weight(y); if (rx == ry) return false; //xの根とyの根が同じなので、何もしない。 if (rank.at(rx) < rank.at(ry)) { parent.at(rx) = ry; diff_weight.at(rx) = -diff_weight_to_ry_from_rx; } else { parent.at(ry) = rx; diff_weight.at(ry) = diff_weight_to_ry_from_rx; if (rank.at(rx) == rank.at(ry)) rank.at(rx)++; } return true; } bool same(int x, int y) { return (root(x) == root(y)); } int count_tree() { int N = parent.size(); int res = 0; rep(i, N) { if (root(i) == i) res++; } return res; } }; // 幾何。二点間距離。 ld calc_dist(int x1, int y1, int x2, int y2) { int tempo = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); ld res = sqrt((ld)tempo); return res; } class doubling { private: //maxN は何個下の頂点まで最大で計算しなければならないか。 int maxN = 1; int logmaxN = 1; int maxV = 1; public: //next[i][v] → 頂点 v の 2^i 先。 //next[i][v] = next[i - 1][next[i - 1][v]]; vector<vector<int>> next; vector<vector<int>> sum; //コンストラクタ doubling(int _maxN, int _maxV) : maxN(_maxN), maxV(_maxV) { initialize0(); }; doubling(int _maxV) : doubling(INF, _maxV) {}; doubling(int _maxN, vector<int> next0) : maxN(_maxN), maxV((int)next0.size()) { initialize(next0); }; doubling(vector<int> next0) : doubling(INF, next0) {}; void initialize0() { while ((1LL << logmaxN) < maxN) logmaxN++; next.assign(logmaxN + 1, vector<int>(maxV)); sum.assign(logmaxN + 1, vector<int>(maxV)); } void initialize(vector<int> next0) { while ((1LL << logmaxN) < maxN) logmaxN++; next.assign(logmaxN + 1, vector<int>(maxV)); sum.assign(logmaxN + 1, vector<int>(maxV)); rep(v, maxV) next[0][v] = next0[v]; rep(v, maxV) sum[0][v] = v; //[v, v + 1) の区間和が v for (int i = 1; i <= logmaxN; i++) { rep(v, maxV) { next[i][v] = next[i - 1][next[i - 1][v]]; } } for (int i = 1; i <= logmaxN; i++) { rep(v, maxV) { sum[i][v] = sum[i - 1][v] + sum[i - 1][next[i - 1][v]]; } } } //v から N 個上の頂点を返す。get(v, 0) = v (0-indexed) int get(int v, int N) { int logN = 1; while ((1LL << logN) < N) logN++; //これと下のどちらか。上の方が計算量的には有利。 //M = next.size(); // = logmaxN; int now = v; for (int i = 0; i <= logN; i++) { if (N & (int)(1LL << i)) { now = next.at(i).at(now); } } return now; } //v から N 個目までの和を返す。get_sum(v, 0) = v (0-indexed) int get_sum(int v, int N) { N++; //1-indexed (get_sum(v, 1) = v, get_sum(v, 0) = 0) から 0-indexedにする。 int logN = 1; while ((1LL << logN) < N) logN++; //これと下のどちらか。上の方が計算量的には有利。 //M = next.size(); // = logmaxN; int now = v; int res = 0; for (int i = 0; i <= logN; i++) { if (N & (int)(1LL << i)) { res += sum.at(i).at(now); now = next.at(i).at(now); } } return res; } }; //ランレングス圧縮 vector<pair<int, char>> RunLength(string S) { int N = S.size(); vector<pair<int, char>> memo; if (N == 1) { memo.push_back(MP(1, S.at(0))); return memo; } int tempo = 1; for (int i = 1; i < N; i++) { if (i != N - 1) { if (S.at(i) == S.at(i - 1)) tempo++; else { memo.push_back(MP(tempo, S.at(i - 1))); tempo = 1; } } else { if (S.at(i) == S.at(i - 1)) { tempo++; memo.push_back(MP(tempo, S.at(i - 1))); } else { memo.push_back(MP(tempo, S.at(i - 1))); memo.push_back(MP(1, S.at(i))); } } } return memo; } void printf_ld(ld res) { printf("%.12Lf\n", res); //cout << std::fixed << std::setprecision(12) << res << endl; } signed main() { int N; cin >> N; cout << N - 1 << endl; }