結果

問題 No.1234 典型RMQ
ユーザー manta1130manta1130
提出日時 2020-10-20 21:05:39
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 23,430 bytes
コンパイル時間 14,930 ms
コンパイル使用メモリ 379,568 KB
実行使用メモリ 9,240 KB
最終ジャッジ日時 2024-11-09 02:37:13
合計ジャッジ時間 19,042 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 1 ms
5,248 KB
testcase_06 AC 111 ms
8,104 KB
testcase_07 AC 79 ms
5,248 KB
testcase_08 AC 117 ms
8,836 KB
testcase_09 AC 96 ms
5,512 KB
testcase_10 AC 113 ms
8,464 KB
testcase_11 AC 107 ms
8,068 KB
testcase_12 AC 96 ms
5,248 KB
testcase_13 AC 82 ms
5,248 KB
testcase_14 AC 95 ms
5,248 KB
testcase_15 AC 92 ms
5,248 KB
testcase_16 AC 115 ms
8,580 KB
testcase_17 AC 96 ms
5,248 KB
testcase_18 AC 74 ms
5,248 KB
testcase_19 AC 117 ms
8,664 KB
testcase_20 AC 97 ms
8,724 KB
testcase_21 AC 108 ms
8,096 KB
testcase_22 AC 105 ms
9,240 KB
testcase_23 AC 105 ms
9,116 KB
testcase_24 AC 105 ms
9,112 KB
testcase_25 AC 105 ms
9,116 KB
testcase_26 AC 105 ms
8,984 KB
testcase_27 AC 1 ms
5,248 KB
testcase_28 AC 1 ms
5,248 KB
testcase_29 AC 1 ms
5,248 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused attribute `macro_export`
  --> src/main.rs:68:5
   |
68 |     #[macro_export]
   |     ^^^^^^^^^^^^^^^
   |
note: the built-in attribute `macro_export` will be ignored, since it's applied to the macro invocation `thread_local`
  --> src/main.rs:69:5
   |
69 |     thread_local! {
   |     ^^^^^^^^^^^^
   = note: `#[warn(unused_attributes)]` on by default

ソースコード

diff #

use std::io::{stdout, BufWriter, Write};
struct MinAdd;
struct MinWithCount;

impl Monoid for MinWithCount {
    type S = (i64, i64);
    fn identity() -> Self::S {
        (1, 9999999999999)
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        (a.0 + b.0, std::cmp::min(a.1, b.1))
    }
}

impl MapMonoid for MinAdd {
    type M = MinWithCount;
    type F = i64;
    fn identity_map() -> Self::F {
        0
    }
    fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S {
        (x.0, x.1 + f)
    }
    fn composition(f: &Self::F, g: &Self::F) -> Self::F {
        *f + *g
    }
}

fn main() {
    let out = stdout();
    let mut out = BufWriter::new(out.lock());
    inputv! {
        n:usize
    }
    let a = input_vector::<i64>();
    let mut segtree: LazySegtree<MinAdd> = LazySegtree::new(n);
    for (i, &x) in a.iter().enumerate() {
        segtree.set(i, (1, x));
    }
    inputv! {
        q:usize
    }
    for _ in 0..q {
        inputv! {
            k:usize,l:usize,r:usize,c:i64
        }
        if k == 1 {
            segtree.apply_range(l - 1, r, c);
        } else {
            writeln!(out, "{}", segtree.prod(l - 1, r).1).unwrap();
        }
    }
}

//https://github.com/rust-lang-ja/ac-library-rs
//https://github.com/manta1130/competitive-template-rs

use input::*;
use lazysegtree::*;
use segtree::*;

pub mod input {
    use std::cell::RefCell;
    use std::io;
    pub const SPLIT_DELIMITER: char = ' ';
    pub use std::io::prelude::*;

    #[macro_export]
    thread_local! {
        pub static INPUT_BUFFER:RefCell<std::collections::VecDeque<String>>=RefCell::new(std::collections::VecDeque::new());
    }

    #[macro_export]
    macro_rules! input_internal {
        ($x:ident : $t:ty) => {
            INPUT_BUFFER.with(|p| {
                if p.borrow().len() == 0 {
                    let temp_str = input_line_str();
                    let mut split_result_iter = temp_str
                        .split(SPLIT_DELIMITER)
                        .map(|q| q.to_string())
                        .collect::<std::collections::VecDeque<_>>();
                    p.borrow_mut().append(&mut split_result_iter)
                }
            });
            let mut buf_split_result = String::new();
            INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
            let $x: $t = buf_split_result.parse().unwrap();
        };
        (mut $x:ident : $t:ty) => {
            INPUT_BUFFER.with(|p| {
                if p.borrow().len() == 0 {
                    let temp_str = input_line_str();
                    let mut split_result_iter = temp_str
                        .split(SPLIT_DELIMITER)
                        .map(|q| q.to_string())
                        .collect::<std::collections::VecDeque<_>>();
                    p.borrow_mut().append(&mut split_result_iter)
                }
            });
            let mut buf_split_result = String::new();
            INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
            let mut $x: $t = buf_split_result.parse().unwrap();
        };
    }

    #[macro_export]
    macro_rules! inputv {
    ($i:ident : $t:ty) => {
        input_internal!{$i : $t}
    };
    (mut $i:ident : $t:ty) => {
        input_internal!{mut $i : $t}
    };
    ($i:ident : $t:ty $(,)*) => {
            input_internal!{$i : $t}
    };
    (mut $i:ident : $t:ty $(,)*) => {
            input_internal!{mut $i : $t}
    };
    (mut $i:ident : $t:ty,$($q:tt)*) => {
            input_internal!{mut $i : $t}
            inputv!{$($q)*}
    };
    ($i:ident : $t:ty,$($q:tt)*) => {
            input_internal!{$i : $t}
            inputv!{$($q)*}
    };
}

    pub fn input_all() {
        INPUT_BUFFER.with(|p| {
            if p.borrow().len() == 0 {
                let mut temp_str = String::new();
                std::io::stdin().read_to_string(&mut temp_str).unwrap();
                let mut split_result_iter = temp_str
                    .split_whitespace()
                    .map(|q| q.to_string())
                    .collect::<std::collections::VecDeque<_>>();
                p.borrow_mut().append(&mut split_result_iter)
            }
        });
    }

    pub fn input_line_str() -> String {
        let mut s = String::new();
        io::stdin().read_line(&mut s).unwrap();
        s.trim().to_string()
    }

    #[allow(clippy::match_wild_err_arm)]
    pub fn input_vector<T>() -> Vec<T>
    where
        T: std::str::FromStr,
    {
        let mut v: Vec<T> = Vec::new();

        let s = input_line_str();
        let split_result = s.split(SPLIT_DELIMITER);
        for z in split_result {
            let buf = match z.parse() {
                Ok(r) => r,
                Err(_) => panic!("Parse Error",),
            };
            v.push(buf);
        }
        v
    }

    #[allow(clippy::match_wild_err_arm)]
    pub fn input_vector_row<T>(n: usize) -> Vec<T>
    where
        T: std::str::FromStr,
    {
        let mut v = Vec::with_capacity(n);
        for _ in 0..n {
            let buf = match input_line_str().parse() {
                Ok(r) => r,
                Err(_) => panic!("Parse Error",),
            };
            v.push(buf);
        }
        v
    }

    pub trait ToCharVec {
        fn to_charvec(&self) -> Vec<char>;
    }

    impl ToCharVec for String {
        fn to_charvec(&self) -> Vec<char> {
            self.to_string().chars().collect::<Vec<_>>()
        }
    }
}
pub mod internal_bit {

    #[allow(dead_code)]
    pub(crate) fn ceil_pow2(n: u32) -> u32 {
        32 - n.saturating_sub(1).leading_zeros()
    }
}
pub mod internal_type_traits {
    use std::{
        fmt,
        iter::{Product, Sum},
        ops::{
            Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
            DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
            SubAssign,
        },
    };

    pub trait Integral:
        'static
        + Send
        + Sync
        + Copy
        + Ord
        + Not<Output = Self>
        + Add<Output = Self>
        + Sub<Output = Self>
        + Mul<Output = Self>
        + Div<Output = Self>
        + Rem<Output = Self>
        + AddAssign
        + SubAssign
        + MulAssign
        + DivAssign
        + RemAssign
        + Sum
        + Product
        + BitOr<Output = Self>
        + BitAnd<Output = Self>
        + BitXor<Output = Self>
        + BitOrAssign
        + BitAndAssign
        + BitXorAssign
        + Shl<Output = Self>
        + Shr<Output = Self>
        + ShlAssign
        + ShrAssign
        + fmt::Display
        + fmt::Debug
        + fmt::Binary
        + fmt::Octal
        + Zero
        + One
        + BoundedBelow
        + BoundedAbove
    {
    }

    pub trait Zero {
        fn zero() -> Self;
    }

    pub trait One {
        fn one() -> Self;
    }

    pub trait BoundedBelow {
        fn min_value() -> Self;
    }

    pub trait BoundedAbove {
        fn max_value() -> Self;
    }

    macro_rules! impl_integral {
    ($($ty:ty),*) => {
        $(
            impl Zero for $ty {
                #[inline]
                fn zero() -> Self {
                    0
                }
            }

            impl One for $ty {
                #[inline]
                fn one() -> Self {
                    1
                }
            }

            impl BoundedBelow for $ty {
                #[inline]
                fn min_value() -> Self {
                    Self::min_value()
                }
            }

            impl BoundedAbove for $ty {
                #[inline]
                fn max_value() -> Self {
                    Self::max_value()
                }
            }

            impl Integral for $ty {}
        )*
    };
}

    impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
}
pub mod lazysegtree {
    use crate::internal_bit::ceil_pow2;
    use crate::Monoid;

    pub trait MapMonoid {
        type M: Monoid;
        type F: Clone;
        fn identity_element() -> <Self::M as Monoid>::S {
            Self::M::identity()
        }
        fn binary_operation(
            a: &<Self::M as Monoid>::S,
            b: &<Self::M as Monoid>::S,
        ) -> <Self::M as Monoid>::S {
            Self::M::binary_operation(a, b)
        }
        fn identity_map() -> Self::F;
        fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S;
        fn composition(f: &Self::F, g: &Self::F) -> Self::F;
    }

    impl<F: MapMonoid> Default for LazySegtree<F> {
        fn default() -> Self {
            Self::new(0)
        }
    }
    impl<F: MapMonoid> LazySegtree<F> {
        pub fn new(n: usize) -> Self {
            vec![F::identity_element(); n].into()
        }
    }
    impl<F: MapMonoid> From<Vec<<F::M as Monoid>::S>> for LazySegtree<F> {
        fn from(v: Vec<<F::M as Monoid>::S>) -> Self {
            let n = v.len();
            let log = ceil_pow2(n as u32) as usize;
            let size = 1 << log;
            let mut d = vec![F::identity_element(); 2 * size];
            let lz = vec![F::identity_map(); size];
            d[size..(size + n)].clone_from_slice(&v);
            let mut ret = LazySegtree {
                n,
                size,
                log,
                d,
                lz,
            };
            for i in (1..size).rev() {
                ret.update(i);
            }
            ret
        }
    }

    impl<F: MapMonoid> LazySegtree<F> {
        pub fn set(&mut self, mut p: usize, x: <F::M as Monoid>::S) {
            assert!(p < self.n);
            p += self.size;
            for i in (1..=self.log).rev() {
                self.push(p >> i);
            }
            self.d[p] = x;
            for i in 1..=self.log {
                self.update(p >> i);
            }
        }

        pub fn get(&mut self, mut p: usize) -> <F::M as Monoid>::S {
            assert!(p < self.n);
            p += self.size;
            for i in (1..=self.log).rev() {
                self.push(p >> i);
            }
            self.d[p].clone()
        }

        pub fn prod(&mut self, mut l: usize, mut r: usize) -> <F::M as Monoid>::S {
            assert!(l <= r && r <= self.n);
            if l == r {
                return F::identity_element();
            }

            l += self.size;
            r += self.size;

            for i in (1..=self.log).rev() {
                if ((l >> i) << i) != l {
                    self.push(l >> i);
                }
                if ((r >> i) << i) != r {
                    self.push(r >> i);
                }
            }

            let mut sml = F::identity_element();
            let mut smr = F::identity_element();
            while l < r {
                if l & 1 != 0 {
                    sml = F::binary_operation(&sml, &self.d[l]);
                    l += 1;
                }
                if r & 1 != 0 {
                    r -= 1;
                    smr = F::binary_operation(&self.d[r], &smr);
                }
                l >>= 1;
                r >>= 1;
            }

            F::binary_operation(&sml, &smr)
        }

        pub fn all_prod(&self) -> <F::M as Monoid>::S {
            self.d[1].clone()
        }

        pub fn apply(&mut self, mut p: usize, f: F::F) {
            assert!(p < self.n);
            p += self.size;
            for i in (1..=self.log).rev() {
                self.push(p >> i);
            }
            self.d[p] = F::mapping(&f, &self.d[p]);
            for i in 1..=self.log {
                self.update(p >> i);
            }
        }
        pub fn apply_range(&mut self, mut l: usize, mut r: usize, f: F::F) {
            assert!(l <= r && r <= self.n);
            if l == r {
                return;
            }

            l += self.size;
            r += self.size;

            for i in (1..=self.log).rev() {
                if ((l >> i) << i) != l {
                    self.push(l >> i);
                }
                if ((r >> i) << i) != r {
                    self.push((r - 1) >> i);
                }
            }

            {
                let l2 = l;
                let r2 = r;
                while l < r {
                    if l & 1 != 0 {
                        self.all_apply(l, f.clone());
                        l += 1;
                    }
                    if r & 1 != 0 {
                        r -= 1;
                        self.all_apply(r, f.clone());
                    }
                    l >>= 1;
                    r >>= 1;
                }
                l = l2;
                r = r2;
            }

            for i in 1..=self.log {
                if ((l >> i) << i) != l {
                    self.update(l >> i);
                }
                if ((r >> i) << i) != r {
                    self.update((r - 1) >> i);
                }
            }
        }

        pub fn max_right<G>(&mut self, mut l: usize, g: G) -> usize
        where
            G: Fn(<F::M as Monoid>::S) -> bool,
        {
            assert!(l <= self.n);
            assert!(g(F::identity_element()));
            if l == self.n {
                return self.n;
            }
            l += self.size;
            for i in (1..=self.log).rev() {
                self.push(l >> i);
            }
            let mut sm = F::identity_element();
            while {
                while l % 2 == 0 {
                    l >>= 1;
                }
                if !g(F::binary_operation(&sm, &self.d[l])) {
                    while l < self.size {
                        self.push(l);
                        l *= 2;
                        let res = F::binary_operation(&sm, &self.d[l]);
                        if g(res.clone()) {
                            sm = res;
                            l += 1;
                        }
                    }
                    return l - self.size;
                }
                sm = F::binary_operation(&sm, &self.d[l]);
                l += 1;
                {
                    let l = l as isize;
                    (l & -l) != l
                }
            } {}
            self.n
        }

        pub fn min_left<G>(&mut self, mut r: usize, g: G) -> usize
        where
            G: Fn(<F::M as Monoid>::S) -> bool,
        {
            assert!(r <= self.n);
            assert!(g(F::identity_element()));
            if r == 0 {
                return 0;
            }
            r += self.size;
            for i in (1..=self.log).rev() {
                self.push((r - 1) >> i);
            }
            let mut sm = F::identity_element();
            while {
                r -= 1;
                while r > 1 && r % 2 != 0 {
                    r >>= 1;
                }
                if !g(F::binary_operation(&self.d[r], &sm)) {
                    while r < self.size {
                        self.push(r);
                        r = 2 * r + 1;
                        let res = F::binary_operation(&self.d[r], &sm);
                        if g(res.clone()) {
                            sm = res;
                            r -= 1;
                        }
                    }
                    return r + 1 - self.size;
                }
                sm = F::binary_operation(&self.d[r], &sm);
                {
                    let r = r as isize;
                    (r & -r) != r
                }
            } {}
            0
        }
    }

    pub struct LazySegtree<F>
    where
        F: MapMonoid,
    {
        n: usize,
        size: usize,
        log: usize,
        d: Vec<<F::M as Monoid>::S>,
        lz: Vec<F::F>,
    }
    impl<F> LazySegtree<F>
    where
        F: MapMonoid,
    {
        fn update(&mut self, k: usize) {
            self.d[k] = F::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
        }
        fn all_apply(&mut self, k: usize, f: F::F) {
            self.d[k] = F::mapping(&f, &self.d[k]);
            if k < self.size {
                self.lz[k] = F::composition(&f, &self.lz[k]);
            }
        }
        fn push(&mut self, k: usize) {
            self.all_apply(2 * k, self.lz[k].clone());
            self.all_apply(2 * k + 1, self.lz[k].clone());
            self.lz[k] = F::identity_map();
        }
    }

    use std::fmt::{Debug, Error, Formatter, Write};
    impl<F> Debug for LazySegtree<F>
    where
        F: MapMonoid,
        F::F: Debug,
        <F::M as Monoid>::S: Debug,
    {
        fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
            for i in 0..self.log {
                for j in 0..1 << i {
                    f.write_fmt(format_args!(
                        "{:?}[{:?}]\t",
                        self.d[(1 << i) + j],
                        self.lz[(1 << i) + j]
                    ))?;
                }
                f.write_char('\n')?;
            }
            for i in 0..self.size {
                f.write_fmt(format_args!("{:?}\t", self.d[self.size + i]))?;
            }
            Ok(())
        }
    }
}
pub mod segtree {
    use crate::internal_bit::ceil_pow2;
    use crate::internal_type_traits::{BoundedAbove, BoundedBelow, One, Zero};
    use std::cmp::{max, min};
    use std::convert::Infallible;
    use std::marker::PhantomData;
    use std::ops::{Add, Mul};

    pub trait Monoid {
        type S: Clone;
        fn identity() -> Self::S;
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
    }

    pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Max<S>
    where
        S: Copy + Ord + BoundedBelow,
    {
        type S = S;
        fn identity() -> Self::S {
            S::min_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            max(*a, *b)
        }
    }

    pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Min<S>
    where
        S: Copy + Ord + BoundedAbove,
    {
        type S = S;
        fn identity() -> Self::S {
            S::max_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            min(*a, *b)
        }
    }

    pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Additive<S>
    where
        S: Copy + Add<Output = S> + Zero,
    {
        type S = S;
        fn identity() -> Self::S {
            S::zero()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a + *b
        }
    }

    pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Multiplicative<S>
    where
        S: Copy + Mul<Output = S> + One,
    {
        type S = S;
        fn identity() -> Self::S {
            S::one()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a * *b
        }
    }

    impl<M: Monoid> Default for Segtree<M> {
        fn default() -> Self {
            Segtree::new(0)
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn new(n: usize) -> Segtree<M> {
            vec![M::identity(); n].into()
        }
    }
    impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
        fn from(v: Vec<M::S>) -> Self {
            let n = v.len();
            let log = ceil_pow2(n as u32) as usize;
            let size = 1 << log;
            let mut d = vec![M::identity(); 2 * size];
            d[size..(size + n)].clone_from_slice(&v);
            let mut ret = Segtree { n, size, log, d };
            for i in (1..size).rev() {
                ret.update(i);
            }
            ret
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn set(&mut self, mut p: usize, x: M::S) {
            assert!(p < self.n);
            p += self.size;
            self.d[p] = x;
            for i in 1..=self.log {
                self.update(p >> i);
            }
        }

        pub fn get(&self, p: usize) -> M::S {
            assert!(p < self.n);
            self.d[p + self.size].clone()
        }

        pub fn prod(&self, mut l: usize, mut r: usize) -> M::S {
            assert!(l <= r && r <= self.n);
            let mut sml = M::identity();
            let mut smr = M::identity();
            l += self.size;
            r += self.size;

            while l < r {
                if l & 1 != 0 {
                    sml = M::binary_operation(&sml, &self.d[l]);
                    l += 1;
                }
                if r & 1 != 0 {
                    r -= 1;
                    smr = M::binary_operation(&self.d[r], &smr);
                }
                l >>= 1;
                r >>= 1;
            }

            M::binary_operation(&sml, &smr)
        }

        pub fn all_prod(&self) -> M::S {
            self.d[1].clone()
        }

        pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(l <= self.n);
            assert!(f(&M::identity()));
            if l == self.n {
                return self.n;
            }
            l += self.size;
            let mut sm = M::identity();
            while {
                while l % 2 == 0 {
                    l >>= 1;
                }
                if !f(&M::binary_operation(&sm, &self.d[l])) {
                    while l < self.size {
                        l *= 2;
                        let res = M::binary_operation(&sm, &self.d[l]);
                        if f(&res) {
                            sm = res;
                            l += 1;
                        }
                    }
                    return l - self.size;
                }
                sm = M::binary_operation(&sm, &self.d[l]);
                l += 1;
                {
                    let l = l as isize;
                    (l & -l) != l
                }
            } {}
            self.n
        }

        pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(r <= self.n);
            assert!(f(&M::identity()));
            if r == 0 {
                return 0;
            }
            r += self.size;
            let mut sm = M::identity();
            while {
                r -= 1;
                while r > 1 && r % 2 == 1 {
                    r >>= 1;
                }
                if !f(&M::binary_operation(&self.d[r], &sm)) {
                    while r < self.size {
                        r = 2 * r + 1;
                        let res = M::binary_operation(&self.d[r], &sm);
                        if f(&res) {
                            sm = res;
                            r -= 1;
                        }
                    }
                    return r + 1 - self.size;
                }
                sm = M::binary_operation(&self.d[r], &sm);
                {
                    let r = r as isize;
                    (r & -r) != r
                }
            } {}
            0
        }

        fn update(&mut self, k: usize) {
            self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
        }
    }

    pub struct Segtree<M>
    where
        M: Monoid,
    {
        n: usize,
        size: usize,
        log: usize,
        d: Vec<M::S>,
    }
}
0