結果

問題 No.1067 #いろいろな色 / Red and Blue and more various colors (Middle)
ユーザー keijakkeijak
提出日時 2020-10-23 08:47:35
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 193 ms / 2,000 ms
コード長 6,305 bytes
コンパイル時間 3,984 ms
コンパイル使用メモリ 249,152 KB
実行使用メモリ 73,856 KB
最終ジャッジ日時 2024-07-21 09:49:12
合計ジャッジ時間 6,349 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 129 ms
47,488 KB
testcase_12 AC 84 ms
29,696 KB
testcase_13 AC 163 ms
65,408 KB
testcase_14 AC 96 ms
37,376 KB
testcase_15 AC 43 ms
16,384 KB
testcase_16 AC 37 ms
13,440 KB
testcase_17 AC 9 ms
5,376 KB
testcase_18 AC 100 ms
38,912 KB
testcase_19 AC 104 ms
41,088 KB
testcase_20 AC 51 ms
17,408 KB
testcase_21 AC 193 ms
73,856 KB
testcase_22 AC 191 ms
73,856 KB
testcase_23 AC 193 ms
73,856 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#include <atcoder/convolution>
#include <atcoder/modint>

using i64 = long long;
using u64 = unsigned long long;
#define REP(i, n) for (int i = 0, REP_N_ = int(n); i < REP_N_; ++i)
#define ALL(x) std::begin(x), std::end(x)

template <class T>
inline bool chmax(T &a, T b) {
  return a < b and ((a = std::move(b)), true);
}
template <class T>
inline bool chmin(T &a, T b) {
  return a > b and ((a = std::move(b)), true);
}

template <typename T>
using V = std::vector<T>;
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
  for (auto &x : a) is >> x;
  return is;
}
template <typename Container>
std::ostream &pprint(const Container &a, std::string_view sep = " ",
                     std::string_view ends = "\n", std::ostream *os = nullptr) {
  if (os == nullptr) os = &std::cout;
  auto b = std::begin(a), e = std::end(a);
  for (auto it = std::begin(a); it != e; ++it) {
    if (it != b) *os << sep;
    *os << *it;
  }
  return *os << ends;
}
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
                                  decltype(std::end(std::declval<T>()))>>
    : std::true_type {};

template <typename T,
          typename = std::enable_if_t<is_iterable<T>::value &&
                                      !std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
  return pprint(a, ", ", "", &(os << "{")) << "}";
}
template <typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
  return os << "(" << a.first << ", " << a.second << ")";
}

#ifdef ENABLE_DEBUG
template <typename T>
void pdebug(const T &value) {
  std::cerr << value;
}
template <typename T, typename... Ts>
void pdebug(const T &value, const Ts &... args) {
  pdebug(value);
  std::cerr << ", ";
  pdebug(args...);
}
#define DEBUG(...)                                   \
  do {                                               \
    std::cerr << " \033[33m (L" << __LINE__ << ") "; \
    std::cerr << #__VA_ARGS__ << ":\033[0m ";        \
    pdebug(__VA_ARGS__);                             \
    std::cerr << std::endl;                          \
  } while (0)
#else
#define pdebug(...)
#define DEBUG(...)
#endif

using namespace std;

// Formal Power Series (dense format).
template <typename T, int DMAX>
struct DenseFPS {
  // Coefficients of terms from x^0 to x^DMAX.
  std::vector<T> coeff_;

  DenseFPS() : coeff_(1) {}  // zero-initialized
  explicit DenseFPS(std::vector<T> c) : coeff_(std::move(c)) {
    assert((int)c.size() <= DMAX + 1);
  }

  DenseFPS(const DenseFPS &other) : coeff_(other.coeff_) {}
  DenseFPS(DenseFPS &&other) : coeff_(std::move(other.coeff_)) {}
  DenseFPS &operator=(const DenseFPS &other) {
    coeff_ = other.coeff_;
    return *this;
  }
  DenseFPS &operator=(DenseFPS &&other) {
    coeff_ = std::move(other.coeff_);
    return *this;
  }

  int size() const { return (int)coeff_.size(); }

  // Returns the coefficient of x^d.
  T operator[](int d) const {
    if (d >= size()) return 0;
    return coeff_[d];
  }

  DenseFPS &operator+=(const T &scalar) {
    coeff_[0] += scalar;
    return *this;
  }
  friend DenseFPS operator+(const DenseFPS &x, const T &scalar) {
    DenseFPS res = x;
    res += scalar;
    return res;
  }
  DenseFPS &operator+=(const DenseFPS &other) {
    if (size() < other.size()) {
      coeff_.resize(other.size());
    }
    for (int i = 0; i < other.size(); ++i) coeff_[i] += other[i];
    return *this;
  }
  friend DenseFPS operator+(const DenseFPS &x, const DenseFPS &y) {
    DenseFPS res = x;
    res += y;
    return res;
  }

  DenseFPS &operator-=(const DenseFPS &other) {
    if (size() < other.size()) {
      coeff_.resize(other.size());
    }
    for (int i = 0; i < other.size(); ++i) coeff_[i] -= other[i];
    return *this;
  }
  friend DenseFPS operator-(const DenseFPS &x, const DenseFPS &y) {
    DenseFPS res = x;
    res -= y;
    return res;
  }

  DenseFPS &operator*=(const T &scalar) {
    for (auto &x : coeff_) x *= scalar;
    return *this;
  }
  friend DenseFPS operator*(const DenseFPS &x, const T &scalar) {
    DenseFPS res = x;
    res *= scalar;
    return res;
  }
  DenseFPS &operator*=(const DenseFPS &other) {
    *this = this->mul_naive(other);
    return *this;
  }
  friend DenseFPS operator*(const DenseFPS &x, const DenseFPS &y) {
    return x.mul_naive(y);
  }

 private:
  // Naive multiplication. O(N^2)
  DenseFPS mul_naive(const DenseFPS &other) const {
    const int n = min(size() + other.size() - 1, DMAX + 1);
    DenseFPS res;
    res.coeff_.resize(n);
    for (int i = 0; i < size(); ++i) {
      for (int j = 0; j < other.size(); ++j) {
        if (i + j >= n) break;
        res.coeff_[i + j] += (*this)[i] * other[j];
      }
    }
    return res;
  }
};

namespace fps {

// Fast polynomial multiplication by single NTT.
template <typename ModInt, int DMAX>
DenseFPS<ModInt, DMAX> mul_ntt(const DenseFPS<ModInt, DMAX> &x,
                               const DenseFPS<ModInt, DMAX> &y) {
  static_assert(ModInt::mod() != 1'000'000'007);  // Must be a NTT-friendly MOD!
  auto z = atcoder::convolution(x.coeff_, y.coeff_);
  if (z.size() > DMAX + 1) {
    z.resize(DMAX + 1);
  }
  return DenseFPS<ModInt, DMAX>(std::move(z));
}

}  // namespace fps

using mint = atcoder::modint998244353;
const int MOD = 998244353;
const int PMAX = 6'000;

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  int N, Q;
  cin >> N >> Q;
  V<int> A(N);
  cin >> A;
  sort(ALL(A));
  V<DenseFPS<mint, PMAX>> ps(N + 1);
  V<mint> prods(N + 1);
  prods[0] = 1;
  REP(i, N) prods[i + 1] = prods[i] * A[i];

  DenseFPS<mint, PMAX> f;
  f += 1;
  ps[N] = f;

  REP(i, N) {
    int ri = N - 1 - i;
    DenseFPS<mint, PMAX> g(std::vector<mint>(2));
    g.coeff_[0] = A[ri] - 1;
    g.coeff_[1] = 1;
    ps[ri] = fps::mul_ntt(ps[ri + 1], g);
  }

  REP(i, Q) {
    int l, r, p;
    cin >> l >> r >> p;

    u64 ans = 0;
    for (int x = l; x <= r; ++x) {
      int j = lower_bound(A.begin(), A.end(), x) - A.begin();
      mint count = ps[j][p] * prods[j];
      ans ^= count.val();
    }
    ans %= MOD;
    cout << ans << '\n';
  }
}
0