結果
問題 | No.1270 Range Arrange Query |
ユーザー | polylogK |
提出日時 | 2020-10-24 00:32:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,207 ms / 7,000 ms |
コード長 | 14,817 bytes |
コンパイル時間 | 2,857 ms |
コンパイル使用メモリ | 220,800 KB |
実行使用メモリ | 6,708 KB |
最終ジャッジ日時 | 2024-07-21 14:24:27 |
合計ジャッジ時間 | 8,946 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
5,632 KB |
testcase_01 | AC | 11 ms
5,632 KB |
testcase_02 | AC | 10 ms
5,632 KB |
testcase_03 | AC | 11 ms
5,888 KB |
testcase_04 | AC | 10 ms
5,760 KB |
testcase_05 | AC | 11 ms
5,760 KB |
testcase_06 | AC | 91 ms
5,760 KB |
testcase_07 | AC | 697 ms
6,152 KB |
testcase_08 | AC | 117 ms
5,816 KB |
testcase_09 | AC | 473 ms
6,128 KB |
testcase_10 | AC | 509 ms
6,120 KB |
testcase_11 | AC | 1,207 ms
6,708 KB |
testcase_12 | AC | 1,206 ms
6,580 KB |
testcase_13 | AC | 1,206 ms
6,708 KB |
testcase_14 | AC | 25 ms
6,200 KB |
testcase_15 | AC | 64 ms
6,708 KB |
testcase_16 | AC | 57 ms
6,456 KB |
testcase_17 | AC | 55 ms
6,580 KB |
ソースコード
#line 1 "005.cpp" #include <bits/stdc++.h> using namespace std::literals::string_literals; using i64 = std::int_fast64_t; using std::cout; using std::cerr; using std::endl; using std::cin; template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);} template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts){ return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } #line 2 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/lazy_segment_tree.hpp" #line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/lazy_segment_tree.hpp" #line 2 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/monoid.hpp" #line 2 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/affine.hpp" #line 4 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/affine.hpp" namespace cplib { template<class T> struct affine { using value_type = T; value_type a; value_type b; constexpr affine(const value_type& a = 1, const value_type& b = 0): a(a), b(b) {} constexpr affine operator+(const affine& r) const { return affine{a + r.a, b + r.b}; } constexpr affine composite(const affine& r) const { return affine{a * r.a, a * r.b + b}; } constexpr value_type evaluate(const value_type& x) { return a * x + b; } }; } #line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/monoid.hpp" namespace cplib { template<class T, T id = T{}> struct add_monoid { using value_type = T; T a; constexpr add_monoid(T a): a(a) {} static constexpr add_monoid operation(const add_monoid& l, const add_monoid& r) { return add_monoid{l.a + r.a}; } static constexpr add_monoid identity() { return add_monoid{id}; }; static constexpr add_monoid inverse(const add_monoid& x) { return add_monoid{-x.a}; } }; template<class T, T id = T{1}> struct mul_monoid { using value_type = T; T a; constexpr mul_monoid(T a): a(a) {} static constexpr mul_monoid operation(const mul_monoid& l, const mul_monoid& r) { return mul_monoid{l.a * r.a}; } static constexpr mul_monoid identity() { return mul_monoid{id}; }; }; template<class T, T id = T{}> struct max_monoid { using value_type = T; T a; constexpr max_monoid(T a): a(a) {} static constexpr max_monoid operation(const max_monoid& l, const max_monoid& r) { return max_monoid{std::max(l.a, r.a)}; } static constexpr max_monoid identity() { return max_monoid{id}; }; }; template<class T, T id = std::numeric_limits<T>::max()> struct min_monoid { using value_type = T; T a; constexpr min_monoid(T a): a(a) {} static constexpr min_monoid operation(const min_monoid& l, const min_monoid& r) { return min_monoid{std::min(l.a, r.a)}; } static constexpr min_monoid identity() { return min_monoid{id}; }; }; template<class T, T& id> struct monoid { using value_type = T; T a; constexpr monoid(T a): a(a) {} static constexpr monoid operation(const monoid& l, const monoid& r) { return monoid{l.a + r.a}; } static constexpr monoid identity() { return monoid{id}; } static constexpr monoid inverse(const monoid& x) { return monoid{x.a.inverse()}; } }; template<class A, class B> struct cartesian_product_monoid { using value_type = std::pair<typename A::value_type, typename B::value_type>; value_type a; constexpr cartesian_product_monoid(const value_type& a): a(a) {} static constexpr cartesian_product_monoid operation(const cartesian_product_monoid& l, const cartesian_product_monoid& r) { return cartesian_product_monoid{{A::operation(l.a.first, r.a.first).a, B::operation(l.a.second, r.a.second).a}}; } static constexpr cartesian_product_monoid identity() { return cartesian_product_monoid{{A::identity().a, B::identity().a}}; } static constexpr cartesian_product_monoid inverse(const cartesian_product_monoid& x) { return cartesian_product_monoid{{A::inverse(x.a.first).a, B::inverse(x.a.second).a}}; } }; template<class T> struct affine_composite_monoid { using value_type = cplib::affine<T>; value_type a; constexpr affine_composite_monoid(const value_type& a): a(a) {} static constexpr affine_composite_monoid operation(const affine_composite_monoid& l, const affine_composite_monoid& r) { return affine_composite_monoid{r.a.composite(l.a)}; } static constexpr affine_composite_monoid identity() { return affine_composite_monoid{value_type()}; } }; } #line 8 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/lazy_segment_tree.hpp" namespace cplib { template<class M, class E, class operation> class lazy_segment_tree { public: using value_type = M; using T = typename value_type::value_type; using operator_type = E; using usize = std::uint_fast32_t; struct node_type { value_type value; operator_type lazy; node_type(const value_type& value, const operator_type& lazy): value(value), lazy(lazy) {} }; private: std::vector<node_type> data; value_type value(const node_type& x) const { return value_type{operation()(x.value.a, x.lazy.a)}; } usize countr_zeros(usize x) const { return __builtin_ctzll(x); } void add(operator_type& l, const operator_type& r) { l = operator_type::operation(l, r); } void propagate(usize idx) { add(data[idx * 2 + 0].lazy, data[idx].lazy); add(data[idx * 2 + 1].lazy, data[idx].lazy); data[idx].lazy = operator_type::identity(); } void propagate_bound(usize idx) { if(idx == 0) return; std::stack<usize> order; idx >>= countr_zeros(idx); while(idx >>= 1) order.push(idx); while(!order.empty()){ propagate(order.top()); order.pop(); } } void recalc(usize idx) { data[idx].value = value_type::operation(value(data[idx * 2 + 0]), value(data[idx * 2 + 1])); } void recalc_bound(usize idx) { if(idx == 0) return; idx >>= countr_zeros(idx); while(idx >>= 1) recalc(idx); } public: lazy_segment_tree() = default; explicit lazy_segment_tree(usize n): data(n << 1, node_type(value_type::identity(), operator_type::identity())) {} template<class InputIt> explicit lazy_segment_tree(InputIt first, InputIt last) : lazy_segment_tree(std::distance(first, last)) { for(int index = 0; first != last; first++, index++) set(index, *first); build(); } usize size() { return data.size() >> 1; } bool empty() { return size() == 0; } void clear() { data.clear(); } void swap(lazy_segment_tree& r) { data.swap(r.data); } T get(usize i) { return fold(i, i + 1).value.a; } void set(usize i, const value_type& x) { data[i + size()].value = x; }; void build() { for(usize i = size() - 1; i > 0; i--) recalc(i); } void change(usize i, const value_type& x) { i += size(); propagate_bound(((i >> 1) << 1) + 1); data[i] = node_type(x, operator_type::identity()); recalc_bound(((i >> 1) << 1) + 1); } void update(usize i, const value_type& x) { i += size(); propagate_bound(((i >> 1) << 1) + 1); data[i] = node_type(value_type::operation(value(data[i]), x), operator_type::identity()); recalc_bound(((i >> 1) << 1) + 1); } T fold(usize first, usize last) { first += size(); last += size(); propagate_bound(first); recalc_bound(first); propagate_bound(last); recalc_bound(last); value_type lval = value_type::identity(); value_type rval = value_type::identity(); while(first != last) { if(first & 1) { lval = value_type::operation(lval, value(data[first])); first++; } if(last & 1) { last--; rval = value_type::operation(value(data[last]), rval); } first >>= 1; last >>= 1; } return value_type::operation(lval, rval).a; } void update(usize first, usize last, const operator_type& x) { first += size(); last += size(); usize first_tmp = first; usize last_tmp = last; propagate_bound(first); propagate_bound(last); while(first != last) { if(first & 1) { add(data[first].lazy, x); first++; } if(last & 1) { last--; add(data[last].lazy, x); } first >>= 1; last >>= 1; } recalc_bound(first_tmp); recalc_bound(last_tmp); } }; } #line 18 "005.cpp" struct Mo { const int width; int q = 0; std::vector< int > le, ri, order; int nl = 0, nr = 0; Mo(int n, int q, double k = 1) : width(int(k* n / sqrt(q) + 1.0)), le(q), ri(q), order(q) {} inline void insert(int l, int r) { le[q] = l; ri[q] = r; order[q] = q; q++; } inline void build() { sort(begin(order), begin(order) + q, [&](int a, int b) { const int ab = le[a] / width, bb = le[b] / width; return ab != bb ? ab < bb : ab & 1 ? ri[a] < ri[b] : ri[b] < ri[a]; }); nl = le[order[0]]; nr = ri[order[0]]; init(nl, nr); for(int i = 0; i < q; i++) { const int id = order[i]; while(nl > le[id]) add(--nl, 0); while(nl < le[id]) rem(nl++, 0); while(nr < ri[id]) add(nr++, 1); while(nr > ri[id]) rem(--nr, 1); next(id); } } inline void init(int l, int r); inline void next(int i); inline void add(int i, int d); inline void rem(int i, int d); }; const int N = 20010; struct operation { int operator()(int a, int b) { return a + b; } }; cplib::lazy_segment_tree<cplib::min_monoid<int, 0>, cplib::add_monoid<int>, operation> seg(N); #line 2 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/segment_tree.hpp" #line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/segment_tree.hpp" #line 7 "/home/ecasdqina/cpcpp/libs/library_cpp/data_structure/segment_tree.hpp" namespace cplib { template<class Monoid> class segment_tree { public: using value_type = Monoid; using T = typename value_type::value_type; using usize = std::uint_fast32_t; private: int n; std::vector<value_type> data; private: usize base() const { return data.size() >> 1; } public: segment_tree() = default; explicit segment_tree(usize n): n(n) { usize size = 1; while(size <= n) size <<= 1; data.assign(size << 1, value_type::identity()); } template<class InputIt> explicit segment_tree(InputIt first, InputIt last) : segment_tree(std::distance(first, last)) { for(int index = 0; first != last; first++, index++) set(index, *first); build(); } usize size() const { return n; } bool empty() const { return size() == 0; } void clear() { n = 0; data.clear(); } void swap(segment_tree& r) { std::swap(n, r.n); data.swap(r.data); } T get(usize i) const { return data[i + base()].a; } void set(usize i, const value_type& x) { data[i + base()] = x; } void build() { for(usize i = (int)base() - 1; i > 0; i--) data[i] = value_type::operation(data[i * 2 + 0], data[i * 2 + 1]); } void change(usize i, const value_type& x) { data[i += base()] = x; while(i >>= 1) data[i] = value_type::operation(data[i * 2 + 0], data[i * 2 + 1]); } void update(usize i, const value_type& x) { change(i, value_type::operation(get(i), x)); } T fold(usize first, usize last) const { first += base(); last += base(); value_type lval = value_type::identity(); value_type rval = value_type::identity(); while(first != last) { if(first & 1) lval = value_type::operation(lval, data[first++]); if(last & 1) rval = value_type::operation(data[--last], rval); first >>= 1; last >>= 1; } return value_type::operation(lval, rval).a; } T fold_all() const { return data[1].a; } // return max{r | f(fold(l, r - 1)) = true} template<class F> usize search_right(int l, const F& f) const { if(l == size()) return base(); l += base(); value_type acc = value_type::identity(); do { while(l % 2 == 0) l >>= 1; if(!f(value_type::operation(acc, data[l]).a)) { while(l < base()) { l = l << 1; if(f(value_type::operation(acc, data[l]).a)) { acc = value_type::operation(acc, data[l]); l += 1; } } return l - base(); } acc = value_type::operation(acc, data[l]); l += 1; } while((l & -l) != l); return size(); } // return min{l | f(fold(l, r - 1) = true} template<class F> usize search_left(int r, const F& f) const { if(r == 0) return 0; r += base(); value_type acc = value_type::identity(); do { r--; while(r > 1 and (r % 2)) r >>= 1; if(!f(value_type::operation(data[r], acc).a)) { while(r < base()) { r = r * 2 + 1; if(f(value_type::operation(data[r], acc).a)) { acc = value_type::operation(data[r], acc); r -= 1; } } return r + 1 - base(); } acc = value_type::operation(data[r], acc); } while((r & -r) == r); return 0; } }; } // @docs docs/segment_tree.md #line 62 "005.cpp" cplib::segment_tree<cplib::add_monoid<i64>> A(N), B(N), C(N); int n; i64 CNT = 0, L[N], R[N], cnt[N], a[N], l[N], r[N], ans[N]; inline void Mo::init(int l, int r) { for(int i = 0; i < l; i++) L[a[i]]++; for(int i = r; i < n; i++) R[a[i]]++; for(int i = 0; i < N - 1; i++) cnt[i] = R[i] - L[i + 1]; for(int i = 0; i < N; i++) seg.update(i, N, cnt[i]); for(int i = r; i < n; i++) C.update(a[i], 1); for(int i = l; i < r; i++) B.update(a[i], 1); for(int i = r; i < n; i++) CNT += B.fold(a[i] + 1, N); } inline void Mo::next(int i) { // int offset = n - (r[i] - l[i]); // cout << i << "(" << l[i] << ", " << r[i] << "): "; // for(int i = 0; i < 10; i++) cout << seg.fold(i, i + 1) << " "; cout << endl; // for(int i = 0; i < 10; i++) cout << L[i] << " "; cout << endl; // for(int i = 0; i < 10; i++) cout << R[i] << " "; cout << endl; ans[i] += seg.fold(0, N) * (r[i] - l[i]) + A.fold(0, l[i]) + A.fold(r[i], n) - CNT; // cout << seg.fold(0, N) * (r[i] - l[i]) << " " << A.fold(0, l[i]) << " " << A.fold(r[i], n) << " " << B.fold(l[i], r[i]) << " " << CNT << endl; } inline void Mo::rem(int i, int d) { int v = a[i]; if(!d) { L[v]++; int tmp = cnt[v - 1]; cnt[v - 1] = R[v - 1] - L[v]; tmp = cnt[v - 1] - tmp; seg.update(v - 1, N, tmp); CNT -= C.fold(0, a[i]); } else { R[v]++; int tmp = cnt[v]; cnt[v] = R[v] - L[v + 1]; tmp = cnt[v] - tmp; seg.update(v, N, tmp); C.update(a[i], 1); CNT -= C.fold(0, a[i]); CNT += B.fold(a[i] + 1, N); } B.update(a[i], -1); } inline void Mo::add(int i, int d) { int v = a[i]; if(!d) { L[v]--; int tmp = cnt[v - 1]; cnt[v - 1] = R[v - 1] - L[v]; tmp = cnt[v - 1] - tmp; seg.update(v - 1, N, tmp); CNT += C.fold(0, a[i]); } else { R[v]--; int tmp = cnt[v]; cnt[v] = R[v] - L[v + 1]; tmp = cnt[v] - tmp; seg.update(v, N, tmp); C.update(a[i], -1); CNT += C.fold(0, a[i]); CNT -= B.fold(a[i] + 1, N); } B.update(a[i], 1); } int main() { int q; scanf("%d%d", &n, &q); for(int i = 0; i < n; i++) scanf("%lld", &a[i]); { cplib::segment_tree<cplib::add_monoid<i64>> cnt(N); for(int i = 0; i < n; i++) { cnt.update(a[i], 1); A.change(i, cnt.fold(a[i] + 1, N)); } } Mo mo(n, q, 2); for(int i = 0; i < q; i++) { scanf("%lld%lld", &l[i], &r[i]); l[i]--; mo.insert(l[i], r[i]); ans[i] = l[i] * (r[i] - l[i]); } mo.build(); for(int i = 0; i < q; i++) printf("%lld\n", ans[i]); return 0; }