結果
問題 | No.323 yuki国 |
ユーザー | yuruhiya |
提出日時 | 2020-10-25 11:26:22 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,194 ms / 5,000 ms |
コード長 | 28,706 bytes |
コンパイル時間 | 2,799 ms |
コンパイル使用メモリ | 221,896 KB |
実行使用メモリ | 174,592 KB |
最終ジャッジ日時 | 2024-07-21 17:33:01 |
合計ジャッジ時間 | 22,455 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 6 ms
5,248 KB |
testcase_03 | AC | 25 ms
8,704 KB |
testcase_04 | AC | 5 ms
5,376 KB |
testcase_05 | AC | 8 ms
5,376 KB |
testcase_06 | AC | 4 ms
5,376 KB |
testcase_07 | AC | 10 ms
5,376 KB |
testcase_08 | AC | 1,094 ms
174,336 KB |
testcase_09 | AC | 1,065 ms
174,336 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1,043 ms
174,336 KB |
testcase_14 | AC | 1,099 ms
174,336 KB |
testcase_15 | AC | 1,091 ms
174,592 KB |
testcase_16 | AC | 1,167 ms
174,464 KB |
testcase_17 | AC | 1,033 ms
174,464 KB |
testcase_18 | AC | 237 ms
55,168 KB |
testcase_19 | AC | 684 ms
107,392 KB |
testcase_20 | AC | 767 ms
174,464 KB |
testcase_21 | AC | 1,194 ms
174,464 KB |
testcase_22 | AC | 855 ms
174,592 KB |
testcase_23 | AC | 1,111 ms
174,464 KB |
testcase_24 | AC | 798 ms
174,464 KB |
testcase_25 | AC | 1,135 ms
174,464 KB |
testcase_26 | AC | 778 ms
174,464 KB |
testcase_27 | AC | 1,093 ms
174,592 KB |
testcase_28 | AC | 1,043 ms
174,464 KB |
testcase_29 | AC | 1,055 ms
174,592 KB |
testcase_30 | AC | 5 ms
5,376 KB |
testcase_31 | AC | 3 ms
5,376 KB |
testcase_32 | AC | 4 ms
5,376 KB |
testcase_33 | AC | 3 ms
5,376 KB |
testcase_34 | AC | 6 ms
5,376 KB |
testcase_35 | AC | 3 ms
5,376 KB |
testcase_36 | AC | 4 ms
5,376 KB |
testcase_37 | AC | 4 ms
5,376 KB |
ソースコード
#line 2 "/home/yuruhiya/programming/library/template/template.cpp" #include <bits/stdc++.h> #line 6 "/home/yuruhiya/programming/library/template/constants.cpp" using namespace std; #define rep(i, n) for (int i = 0; i < (n); ++i) #define FOR(i, m, n) for (int i = (m); i < (n); ++i) #define rrep(i, n) for (int i = (n)-1; i >= 0; --i) #define rfor(i, m, n) for (int i = (m); i >= (n); --i) #define unless(c) if (!(c)) #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r) using namespace std; using ll = long long; using LD = long double; using VB = vector<bool>; using VVB = vector<VB>; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<ll>; using VVL = vector<VL>; using VS = vector<string>; using VD = vector<LD>; using PII = pair<int, int>; using VP = vector<PII>; using PLL = pair<ll, ll>; using VPL = vector<PLL>; template <class T> using PQ = priority_queue<T>; template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>; constexpr int inf = 1e9; constexpr long long inf_ll = 1e18, MOD = 1000000007; constexpr long double PI = 3.14159265358979323846, EPS = 1e-12; #line 7 "/home/yuruhiya/programming/library/template/Input.cpp" using namespace std; #ifdef _WIN32 #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #define fwrite_unlocked fwrite #define fflush_unlocked fflush #endif class Input { static int gc() { return getchar_unlocked(); } template <class T> static void i(T& v) { cin >> v; } static void i(char& v) { while (isspace(v = gc())) ; } static void i(bool& v) { v = in<char>() != '0'; } static void i(string& v) { v.clear(); char c; for (i(c); !isspace(c); c = gc()) v += c; } static void i(int& v) { bool neg = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void i(long long& v) { bool neg = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c); c = gc()) v = v * 10 + (c - '0'); if (neg) v = -v; } static void i(double& v) { double dp = 1; bool neg = false, adp = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') adp = true; else if (adp) v += (c - '0') * (dp *= 0.1); else v = v * 10 + (c - '0'); } if (neg) v = -v; } static void i(long double& v) { long double dp = 1; bool neg = false, adp = false; v = 0; char c; i(c); if (c == '-') { neg = true; c = gc(); } for (; isdigit(c) || c == '.'; c = gc()) { if (c == '.') adp = true; else if (adp) v += (c - '0') * (dp *= 0.1); else v = v * 10 + (c - '0'); } if (neg) v = -v; } template <class T, class U> static void i(pair<T, U>& v) { i(v.first); i(v.second); } template <class T> static void i(vector<T>& v) { for (auto& e : v) i(e); } template <size_t N = 0, class T> static void input_tuple(T& v) { if constexpr (N < tuple_size_v<T>) { i(get<N>(v)); input_tuple<N + 1>(v); } } template <class... T> static void i(tuple<T...>& v) { input_tuple(v); } struct InputV { int n, m; InputV(int _n) : n(_n), m(0) {} InputV(const pair<int, int>& nm) : n(nm.first), m(nm.second) {} template <class T> operator vector<T>() { vector<T> v(n); i(v); return v; } template <class T> operator vector<vector<T>>() { vector<vector<T>> v(n, vector<T>(m)); i(v); return v; } }; public: static string read_line() { string v; char c; for (i(c); c != '\n' && c != '\0'; c = gc()) v += c; return v; } template <class T> static T in() { T v; i(v); return v; } template <class T> operator T() const { return in<T>(); } int operator--(int) const { return in<int>() - 1; } InputV operator[](int n) const { return InputV(n); } InputV operator[](const pair<int, int>& n) const { return InputV(n); } void operator()() const {} template <class H, class... T> void operator()(H&& h, T&&... t) const { i(h); operator()(forward<T>(t)...); } private: template <template <class...> class, class...> struct Multiple; template <template <class...> class V, class Head, class... Tail> struct Multiple<V, Head, Tail...> { template <class... Args> using vec = V<vector<Head>, Args...>; using type = typename Multiple<vec, Tail...>::type; }; template <template <class...> class V> struct Multiple<V> { using type = V<>; }; template <class... T> using multiple_t = typename Multiple<tuple, T...>::type; template <size_t N = 0, class T> void in_multiple(T& t) const { if constexpr (N < tuple_size_v<T>) { auto& vec = get<N>(t); using V = typename remove_reference_t<decltype(vec)>::value_type; vec.push_back(in<V>()); in_multiple<N + 1>(t); } } public: template <class... T> auto multiple(int H) const { multiple_t<T...> res; while (H--) in_multiple(res); return res; } } in; #define input(T) Input::in<T>() #define INT input(int) #define LL input(long long) #define STR input(string) #define inputs(T, ...) \ T __VA_ARGS__; \ in(__VA_ARGS__) #define ini(...) inputs(int, __VA_ARGS__) #define inl(...) inputs(long long, __VA_ARGS__) #define ins(...) inputs(string, __VA_ARGS__) #line 6 "/home/yuruhiya/programming/library/template/Output.cpp" #include <charconv> #line 9 "/home/yuruhiya/programming/library/template/Output.cpp" using namespace std; struct BoolStr { const char *t, *f; BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {} } Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0"); struct DivStr { const char *d, *l; DivStr(const char* _d, const char* _l) : d(_d), l(_l) {} } spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", ""); class Output { BoolStr B{Yes}; DivStr D{spc}; void p(int v) const { char buf[12]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void p(long long v) const { char buf[21]{}; if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) { fwrite(buf, sizeof(char), ptr - buf, stdout); } else { assert(false); } } void p(bool v) const { p(v ? B.t : B.f); } void p(char v) const { putchar_unlocked(v); } void p(const char* v) const { fwrite_unlocked(v, 1, strlen(v), stdout); } void p(double v) const { printf("%.20f", v); } void p(long double v) const { printf("%.20Lf", v); } template <class T> void p(const T& v) const { cout << v; } template <class T, class U> void p(const pair<T, U>& v) const { p(v.first); p(D.d); p(v.second); } template <class T> void p(const vector<T>& v) const { rep(i, sz(v)) { if (i) p(D.d); p(v[i]); } } template <class T> void p(const vector<vector<T>>& v) const { rep(i, sz(v)) { if (i) p(D.l); p(v[i]); } } public: Output& operator()() { p(D.l); return *this; } template <class H> Output& operator()(H&& h) { p(h); p(D.l); return *this; } template <class H, class... T> Output& operator()(H&& h, T&&... t) { p(h); p(D.d); return operator()(forward<T>(t)...); } template <class It> Output& range(const It& l, const It& r) { for (It i = l; i != r; i++) { if (i != l) p(D.d); p(*i); } p(D.l); return *this; } template <class T> Output& range(const T& a) { range(a.begin(), a.end()); return *this; } template <class... T> void exit(T&&... t) { operator()(forward<T>(t)...); std::exit(EXIT_SUCCESS); } Output& flush() { fflush_unlocked(stdout); return *this; } Output& set(const BoolStr& b) { B = b; return *this; } Output& set(const DivStr& d) { D = d; return *this; } Output& set(const char* t, const char* f) { B = BoolStr(t, f); return *this; } } out; #line 3 "/home/yuruhiya/programming/library/template/Step.cpp" using namespace std; template <class T> struct Step { class It { T a, b, c; public: constexpr It() : a(T()), b(T()), c(T()) {} constexpr It(T _b, T _c, T _s) : a(_b), b(_c), c(_s) {} constexpr It& operator++() { --b; a += c; return *this; } constexpr It operator++(int) { It tmp = *this; --b; a += c; return tmp; } constexpr const T& operator*() const { return a; } constexpr const T* operator->() const { return &a; } constexpr bool operator==(const It& i) const { return b == i.b; } constexpr bool operator!=(const It& i) const { return !(b == i.b); } constexpr T start() const { return a; } constexpr T size() const { return b; } constexpr T step() const { return c; } }; constexpr Step(T b, T c, T s) : be(b, c, s) {} constexpr It begin() const { return be; } constexpr It end() const { return en; } constexpr T start() const { return be.start(); } constexpr T size() const { return be.size(); } constexpr T step() const { return be.step(); } constexpr T sum() const { return start() * size() + step() * (size() * (size() - 1) / 2); } operator vector<T>() const { return to_a(); } auto to_a() const { vector<T> res; res.reserve(size()); for (auto i : *this) { res.push_back(i); } return res; } using value_type = T; using iterator = It; private: It be, en; }; template <class T> inline constexpr auto step(T a) { return Step<T>(0, a, 1); } template <class T> inline constexpr auto step(T a, T b) { return Step<T>(a, b - a, 1); } template <class T> inline constexpr auto step(T a, T b, T c) { return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c); } #line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp" using namespace std; template <class F> struct Callable { F func; Callable(const F& f) : func(f) {} }; template <class T, class F> auto operator|(const T& v, const Callable<F>& c) { return c.func(v); } struct Sort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) { sort(begin(v), end(v)); return v; } } Sort; struct SortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) < f(j); }); return v; }); } } SortBy; struct RSort_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(rbegin(v), rend(v), f); return v; }); } template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) { sort(rbegin(v), rend(v)); return v; } } RSort; struct RSortBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { sort(begin(v), end(v), [&](const auto& i, const auto& j) { return f(i) > f(j); }); return v; }); } } RSortBy; struct Reverse_impl { template <class T> friend auto operator|(T v, const Reverse_impl& c) { reverse(begin(v), end(v)); return v; } } Reverse; struct Unique_impl { template <class T> friend auto operator|(T v, const Unique_impl& c) { v.erase(unique(begin(v), end(v), end(v))); return v; } } Unique; struct Uniq_impl { template <class T> friend auto operator|(T v, const Uniq_impl& c) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v; } } Uniq; struct Rotate_impl { auto operator()(int&& left) { return Callable([&](auto v) { int s = static_cast<int>(size(v)); assert(-s <= left && left <= s); if (0 <= left) { rotate(begin(v), begin(v) + left, end(v)); } else { rotate(begin(v), end(v) + left, end(v)); } return v; }); } } Rotate; struct Max_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *max_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Max_impl& c) { return *max_element(begin(v), end(v)); } } Max; struct Min_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return *min_element(begin(v), end(v), f); }); } template <class T> friend auto operator|(T v, const Min_impl& c) { return *min_element(begin(v), end(v)); } } Min; struct MaxPos_impl { template <class T> friend auto operator|(T v, const MaxPos_impl& c) { return max_element(begin(v), end(v)) - begin(v); } } MaxPos; struct MinPos_impl { template <class T> friend auto operator|(T v, const MinPos_impl& c) { return min_element(begin(v), end(v)) - begin(v); } } MinPos; struct MaxBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_it = begin(v); auto max_val = f(*max_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_it = it; max_val = val; } } return *max_it; }); } } MaxBy; struct MinBy_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_it = begin(v); auto min_val = f(*min_it); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_it = it; min_val = val; } } return *min_it; }); } } MinBy; struct MaxOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto max_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); max_val < val) { max_val = val; } } return max_val; }); } } MaxOf; struct MinOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { auto min_val = f(*begin(v)); for (auto it = next(begin(v)); it != end(v); ++it) { if (auto val = f(*it); min_val > val) { min_val = val; } } return min_val; }); } } MinOf; struct Count_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return count(begin(v), end(v), val); }); } } Count; struct CountIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return count_if(begin(v), end(v), f); }); } } CountIf; struct Index_impl { template <class V> auto operator()(const V& val) { return Callable([&](auto v) -> optional<int> { auto res = find(begin(v), end(v), val); return res != end(v) ? optional(res - begin(v)) : nullopt; }); } } Index; struct IndexIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<int> { auto res = find_if(begin(v), end(v), f); return res != end(v) ? optional(res - begin(v)) : nullopt; }); } } IndexIf; struct FindIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) -> optional<typename decltype(v)::value_type> { auto res = find_if(begin(v), end(v), f); return res != end(v) ? optional(*res) : nullopt; }); } } FindIf; struct Sum_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { return accumulate(next(begin(v)), end(v), f(*begin(v)), [&](const auto& a, const auto& b) { return a + f(b); }); }); } template <class T> friend auto operator|(T v, const Sum_impl& c) { return accumulate(begin(v), end(v), typename T::value_type{}); } } Sum; struct Includes { template <class V> auto operator()(const V& val) { return Callable([&](auto v) { return find(begin(v), end(v), val) != end(v); }); } } Includes; struct IncludesIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { return find_if(begin(v), end(v), f) != end(v); }); } } IncludesIf; struct RemoveIf_impl { template <class F> auto operator()(const F& f) { return Callable([&](auto v) { v.erase(remove_if(begin(v), end(v), f), end(v)); return v; }); } } RemoveIf; struct Each_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { f(i); } }); } } Each; struct Select_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using value_type = typename decltype(v)::value_type; vector<value_type> res; for (const auto& i : v) { if (f(i)) res.push_back(i); } return res; }); } } Select; struct Map_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { using result_type = invoke_result_t<F, typename decltype(v)::value_type>; vector<result_type> res; res.reserve(size(v)); for (const auto& i : v) { res.push_back(f(i)); } return res; }); } } Map; struct Indexed_impl { template <class T> friend auto operator|(const T& v, Indexed_impl& c) { using value_type = typename T::value_type; vector<pair<value_type, int>> res; res.reserve(size(v)); int index = 0; for (const auto& i : v) { res.emplace_back(i, index++); } return res; } } Indexed; struct AllOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (!f(i)) return false; } return true; }); } } AllOf; struct AnyOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return true; } return false; }); } } AnyOf; struct NoneOf_impl { template <class F> auto operator()(F&& f) { return Callable([&](auto v) { for (const auto& i : v) { if (f(i)) return false; } return true; }); } } NoneOf; struct Tally_impl { template <class F> auto operator()(size_t max_val) { return Callable([&](auto v) { vector<size_t> res(max_val); for (const auto& i : v) { res[static_cast<size_t>(i)]++; } return res; }); } template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, Tally_impl& c) { map<value_type, size_t> res; for (const auto& i : v) { res[i]++; } return res; } } Tally; template <class T> auto operator*(const vector<T>& a, size_t n) { T res; for (size_t i = 0; i < n; ++i) { res.insert(res.end(), a.begin(), a.end()); } return res; } auto operator*(string a, size_t n) { string res; for (size_t i = 0; i < n; ++i) { res += a; } return res; } template <class T, class U> auto& operator<<(vector<T>& a, const U& b) { a.insert(a.end(), all(b)); return a; } template <class T> auto& operator<<(string& a, const T& b) { a.insert(a.end(), all(b)); return a; } template <class T, class U> auto operator+(vector<T> a, const U& b) { a << b; return a; } template <class T> auto operator+(string a, const T& b) { a << b; return a; } #line 6 "/home/yuruhiya/programming/library/template/functions.cpp" using namespace std; template <class T, class U> inline int Lower(const T& a, const U& v) { return lower_bound(all(a), v) - a.begin(); } template <class T, class U> inline int Upper(const T& a, const U& v) { return upper_bound(all(a), v) - a.begin(); } template <class T> inline auto Slice(const T& v, size_t i, size_t len) { return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T(); } template <class T> inline T Ceil(T n, T m) { return (n + m - 1) / m; } template <class T> inline T Ceil2(T n, T m) { return Ceil(n, m) * m; } template <class T> inline T Tri(T n) { return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1); } template <class T> inline T nC2(T n) { return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1); } template <class T> inline T Mid(const T& l, const T& r) { return l + (r - l) / 2; } template <class T> inline bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool inRange(const T& v, const T& min, const T& max) { return min <= v && v < max; } template <class T> inline bool isSquere(T n) { T s = sqrt(n); return s * s == n || (s + 1) * (s + 1) == n; } template <class T = long long> inline T BIT(int b) { return T(1) << b; } template <class T, class U = typename T::value_type> inline U Gcdv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>); } template <class T, class U = typename T::value_type> inline U Lcmv(const T& v) { return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>); } template <class T> inline T Pow(T a, T n) { T r = 1; while (n > 0) { if (n & 1) r *= a; a *= a; n /= 2; } return r; } template <class T> inline T Powmod(T a, T n, T m = MOD) { T r = 1; while (n > 0) { if (n & 1) r = r * a % m, n--; else a = a * a % m, n /= 2; } return r; } #line 9 "/home/yuruhiya/programming/library/template/template.cpp" #if __has_include(<library/dump.hpp>) #include <library/dump.hpp> #define LOCAL #else #define dump(...) ((void)0) #endif #line 5 "/home/yuruhiya/programming/library/Utility/Point.cpp" using namespace std; struct Point { static int H, W; static const vector<Point> d; static void set_range(int _H, int _W) { H = _H; W = _W; } static constexpr Point zero() { return {0, 0}; } static constexpr Point one() { return {1, 1}; } int x, y; constexpr Point() : x(0), y(0) {} constexpr Point(int _x, int _y) : x(_x), y(_y) {} constexpr Point(const pair<int, int>& xy) : x(xy.first), y(xy.second) {} Point(int n) : x(n % W), y(n / W) {} constexpr Point operator+() const { return *this; } constexpr Point operator-() const { return {-x, -y}; } constexpr Point operator+(const Point& p) const { return Point(*this) += p; } constexpr Point operator-(const Point& p) const { return Point(*this) -= p; } constexpr Point operator*(const Point& p) const { return Point(*this) *= p; } constexpr Point operator/(const Point& p) const { return Point(*this) /= p; } constexpr Point operator%(const Point& p) const { return Point(*this) %= p; } constexpr Point operator+(int n) const { return Point(*this) += n; } constexpr Point operator-(int n) const { return Point(*this) -= n; } constexpr Point operator*(int n) const { return Point(*this) *= n; } constexpr Point operator/(int n) const { return Point(*this) /= n; } constexpr Point operator%(int n) const { return Point(*this) %= n; } constexpr Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } constexpr Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } constexpr Point& operator*=(const Point& p) { x *= p.x; y *= p.y; return *this; } constexpr Point& operator/=(const Point& p) { x /= p.x; y /= p.y; return *this; } constexpr Point& operator%=(const Point& p) { x %= p.x; y %= p.y; return *this; } constexpr Point& operator+=(int n) { x += n; y += n; return *this; } constexpr Point& operator-=(int n) { x -= n; y -= n; return *this; } constexpr Point& operator*=(int n) { x *= n; y *= n; return *this; } constexpr Point& operator/=(int n) { x /= n; y /= n; return *this; } constexpr Point& operator%=(int n) { x %= n; y %= n; return *this; } constexpr bool operator==(const Point& p) const { return x == p.x && y == p.y; } constexpr bool operator!=(const Point& p) const { return x != p.x || y != p.y; } bool operator<(const Point& p) const { return to_i() < p.to_i(); } bool operator<=(const Point& p) const { return to_i() <= p.to_i(); } bool operator>(const Point& p) const { return to_i() > p.to_i(); } bool operator>=(const Point& p) const { return to_i() >= p.to_i(); } constexpr int operator[](int i) const { return i == 0 ? x : i == 1 ? y : 0; } bool in_range() const { return 0 <= x && x < W && 0 <= y && y < H; } int to_i() const { return x + y * W; } constexpr pair<int, int> to_pair() const { return {x, y}; } int dist(const Point& p) const { return std::abs(x - p.x) + std::abs(y - p.y); } int dist_square(const Point& p) const { return (x - p.x) * (x - p.x) + (y - p.y) * (y - p.y); } Point abs(const Point& p) const { return {std::abs(x - p.x), std::abs(y - p.y)}; } Point abs() const { return {std::abs(x), std::abs(y)}; } Point& swap() { std::swap(x, y); return *this; } template <class It> vector<Point> enum_adjanect(It first, It last) const { vector<Point> res; for (; first != last; ++first) { res.push_back(operator+(*first)); } return res; } template <class It> vector<Point> enum_adj_in_range(It first, It last) const { vector<Point> res; for (; first != last; ++first) { auto p = operator+(*first); if (p.in_range()) res.push_back(p); } return res; } vector<Point> adjacent4() const { return enum_adjanect(d.begin(), d.begin() + 4); } vector<Point> adjacent8() const { return enum_adjanect(d.begin(), d.end()); } vector<Point> adj4_in_range() const { return enum_adj_in_range(d.begin(), d.begin() + 4); } vector<Point> adj8_in_range() const { return enum_adj_in_range(d.begin(), d.end()); } constexpr Point left() const { return {x - 1, y}; } constexpr Point right() const { return {x + 1, y}; } constexpr Point up() const { return {x, y - 1}; } constexpr Point down() const { return {x, y + 1}; } constexpr Point moved(char c) const { return Point(*this).move(c); } constexpr Point& move(char c) { switch (c) { case 'L': case 'l': case 'W': case '>': x--; break; case 'R': case 'r': case 'E': case '<': x++; break; case 'U': case 'u': case 'N': case '^': y--; break; case 'D': case 'd': case 'S': case 'v': y++; break; } return *this; } constexpr Point rotate90() { return {y, -x}; } constexpr Point rotate180() { return {-x, -y}; } constexpr Point rotate270() { return {-y, x}; } friend ostream& operator<<(ostream& os, const Point& p) { return os << '(' << p.x << ", " << p.y << ')'; } friend istream& operator>>(istream& is, Point& p) { return is >> p.y >> p.x; } }; int Point::H, Point::W; const vector<Point> Point::d{{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {1, 1}, {-1, -1}, {1, -1}, {-1, 1}}; #line 5 "/home/yuruhiya/programming/library/Graph/GraphTemplate.cpp" using namespace std; using Weight = long long; constexpr Weight INF = numeric_limits<Weight>::max(); struct Edge { int to; Weight cost; Edge() : to(-1), cost(-1) {} Edge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {} friend bool operator<(const Edge& e1, const Edge& e2) { return e1.cost < e2.cost; } friend bool operator>(const Edge& e1, const Edge& e2) { return e1.cost > e2.cost; } friend ostream& operator<<(ostream& os, const Edge& e) { return os << "->" << e.to << '(' << e.cost << ')'; } }; using Graph = vector<vector<Edge>>; struct Edge2 { int from, to; Weight cost; Edge2() : from(-1), to(-1), cost(0) {} Edge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {} friend bool operator<(const Edge2& e1, const Edge2& e2) { return e1.cost < e2.cost; } friend bool operator>(const Edge2& e1, const Edge2& e2) { return e1.cost > e2.cost; } friend ostream& operator<<(ostream& os, const Edge2& e) { return os << e.from << "->" << e.to << '(' << e.cost << ')'; } }; using Edges = vector<Edge2>; using Matrix = vector<vector<Weight>>; #line 5 "/home/yuruhiya/programming/library/Graph/isConnected.cpp" using namespace std; bool isConnected(const vector<vector<int>>& graph, int s, int t) { int V = graph.size(); queue<int> que; que.push(s); vector<bool> vis(V); vis[s] = true; while (!que.empty()) { int fro = que.front(); que.pop(); if (fro == t) return true; for (int e : graph[fro]) { if (!vis[e]) { que.push(e); vis[e] = true; } } } return false; } #line 4 "a.cpp" #ifdef LOCAL const int MAX_SNOW = 15; #else const int MAX_SNOW = 1250; #endif struct Data { Point p; int snow; Data(const Point& _p, int _s) : p(_p), snow(_s) {} int to_i() { return p.to_i() * MAX_SNOW + snow; } }; int main() { int h, w, a, b; Point start, goal; in(h, w, a, start, b, goal); VS s = in[h]; Point::set_range(h, w); const int MAX_STATE = h * w * MAX_SNOW; VVI g(MAX_STATE); rep(i, h) rep(j, w) rep(snow, MAX_SNOW) { Point p(j, i); int v = Data(p, snow).to_i(); for (Point q : p.adj4_in_range()) { if (s[q.y][q.x] == '.' && snow >= 2) { g[v].push_back(Data(q, snow - 1).to_i()); } if (s[q.y][q.x] == '*' && snow <= MAX_SNOW - 2) { g[v].push_back(Data(q, snow + 1).to_i()); } } } int S = Data(start, a).to_i(), G = Data(goal, b).to_i(); out(isConnected(g, S, G)); }