結果

問題 No.1269 I hate Fibonacci Number
ユーザー koba-e964
提出日時 2020-10-25 18:23:16
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 181 ms / 3,000 ms
コード長 9,566 bytes
コンパイル時間 13,010 ms
コンパイル使用メモリ 403,580 KB
実行使用メモリ 57,856 KB
最終ジャッジ日時 2024-07-21 20:55:19
合計ジャッジ時間 15,272 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [graph1; $len:expr]) => {{
let mut g = vec![vec![]; $len];
let ab = read_value!($next, [(usize1, usize1)]);
for (a, b) in ab {
g[a].push(b);
g[b].push(a);
}
g
}};
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
#[allow(unused)]
macro_rules! debug {
($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}
/// Verified by https://atcoder.jp/contests/arc093/submissions/3968098
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// The Aho-Corasick automaton construction.
// Complexity: \sum |pat| * alpha
fn slow_build_automaton(pat: &[Vec<usize>], alpha: usize)
-> (Vec<Vec<usize>>, Vec<bool>) {
let mut st = vec![vec![usize::MAX; alpha]];
let mut fin = vec![false];
let mut back = vec![0];
for p in pat {
let mut cur = 0;
for i in 0..p.len() {
let c = p[i];
if st[cur][c] == usize::MAX {
st.push(vec![usize::MAX; alpha]);
fin.push(false);
back.push(usize::MAX);
st[cur][c] = st.len() - 1;
}
cur = st[cur][c];
}
fin[cur] = true;
}
// fill in back links
// Note: states are *not necessarily* topologically sorted!
// Therefore, we need to use a queue.
let mut que = std::collections::VecDeque::new();
que.push_back(0);
while let Some(i) = que.pop_front() {
assert_ne!(back[i], usize::MAX);
if fin[back[i]] {
fin[i] = true;
}
for j in 0..alpha {
if st[i][j] != usize::MAX {
let nxt = st[i][j];
que.push_back(nxt);
if i == 0 {
back[nxt] = 0;
} else {
let mut cur = back[i];
while st[cur][j] == usize::MAX && cur > 0 {
assert_ne!(back[cur], usize::MAX);
cur = back[cur];
}
back[nxt] = [0, st[cur][j]][usize::from(st[cur][j] != usize::MAX)];
}
}
}
}
// fill in vacant transitions
for i in 0..st.len() {
for j in 0..alpha {
if st[i][j] == usize::MAX {
let mut cur = back[i];
while st[cur][j] == usize::MAX && cur > 0 {
cur = back[cur];
}
st[i][j] = [0, st[cur][j]][usize::from(st[cur][j] != usize::MAX)];
}
}
}
(st, fin)
}
// Tags: aho-corasick, dp
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
#[allow(unused)]
macro_rules! putvec {
($v:expr) => {
for i in 0..$v.len() {
puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "});
}
}
}
input! {
n: usize, l: i64, r: i64,
}
let mut fibs = vec![];
{
let mut a = 1;
let mut b = 2;
while a <= r {
if l <= a {
fibs.push(a.to_string().bytes().map(|x| (x - b'0') as usize)
.collect::<Vec<_>>());
}
let c = a + b;
a = b;
b = c;
}
}
eprintln!("fib = {:?}", fibs);
// build an automaton
let (trans, fin) = slow_build_automaton(&fibs, 10);
let m = trans.len();
let mut dp = vec![vec![[MInt::new(0); 2]; m]; n + 1];
dp[0][0][0] += 1;
for i in 0..n {
for k in 0..m {
let val0 = dp[i][k][0];
let val1 = dp[i][k][1];
for j in 0..10 {
let to = trans[k][j];
if fin[to] {
dp[i + 1][to][1] += val0 + val1;
} else {
dp[i + 1][to][0] += val0;
dp[i + 1][to][1] += val1;
}
}
}
}
let mut tot = MInt::new(0);
for i in 0..m {
tot += dp[n][i][0];
}
puts!("{}\n", tot - 1); // remove 0
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0