結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| コンテスト | |
| ユーザー |
onakasuitacity
|
| 提出日時 | 2020-10-26 22:32:09 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,140 bytes |
| コンパイル時間 | 163 ms |
| コンパイル使用メモリ | 82,164 KB |
| 実行使用メモリ | 435,076 KB |
| 最終ジャッジ日時 | 2024-07-21 21:44:11 |
| 合計ジャッジ時間 | 8,318 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 1 -- * 16 |
ソースコード
import sys
INF = 1 << 60
MOD = 10**9 + 7 # 998244353
sys.setrecursionlimit(2147483647)
input = lambda:sys.stdin.readline().rstrip()
def _fmt(f, prime, root = 3, inverse = False):
N = len(f)
logN = (N - 1).bit_length()
base = pow(root, (prime - 1) // N * (1 - 2 * inverse) % (prime - 1), prime)
step = N
for k in range(logN):
step >>= 1
w = pow(base, step, prime)
wj = 1
nf = [0] * N
for j in range(1 << k):
for i in range(1 << logN - k - 1):
s, t = i + 2 * j * step, i + (2 * j + 1) * step
ns, nt = i + j * step, i + j * step + (N >> 1)
nf[ns], nf[nt] = (f[s] + f[t] * wj) % prime, (f[s] - f[t] * wj) % prime
wj = (wj * w) % prime
f = nf
return f
def convolution(f, g, MOD):
N = 1 << (len(f) + len(g) - 2).bit_length()
primes = [167772161, 469762049, 1224736769]
N_invs = (pow(N, p - 2, p) for p in primes)
Ffs, Fgs = [_fmt(f + [0] * (N - len(f)), p) for p in primes], [_fmt(g + [0] * (N - len(g)), p) for p in primes]
fgs = [_fmt([a * b % p * N_inv % p for a, b in zip(Ff, Fg)], p, inverse = True) for Ff, Fg, p, N_inv in zip(Ffs, Fgs, primes, N_invs)]
fg = []
primes.append(MOD)
for R in zip(*fgs):
coeffs, consts = [1] * 4, [0] * 4
for i in range(3):
a, b, u, v = coeffs[i], primes[i], 1, 0
while b:
a, b, u, v = b, a - a // b * b, v, u - a // b * v
t = (R[i] - consts[i]) * (u % primes[i]) % primes[i]
for j in range(i + 1, 4):
consts[j] = (consts[j] + t * coeffs[j]) % primes[j]
coeffs[j] = coeffs[j] * primes[i] % primes[j]
fg.append(consts[-1])
if len(fg) == len(f) + len(g) - 1:
return fg
def resolve():
p = int(input())
queries = [int(input()) - 2 for _ in range(int(input()))]
k = max(queries)
f = [0] * (k + 1)
f[1] = 1
for i in range(2, k + 1):
f[i] = (p * f[i - 1] + f[i - 2]) % MOD
f2 = convolution(f, f, MOD)
print(*(f2[i] for i in queries), sep = '\n')
resolve()
onakasuitacity