結果
| 問題 |
No.1145 Sums of Powers
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-10-27 13:34:42 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 769 ms / 2,000 ms |
| コード長 | 12,814 bytes |
| コンパイル時間 | 2,552 ms |
| コンパイル使用メモリ | 212,188 KB |
| 最終ジャッジ日時 | 2025-01-15 16:00:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
コンパイルメッセージ
000.cpp: In function ‘int main()’:
000.cpp:46:37: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<998244353>::u64’ {aka ‘long unsigned int’} [-Wformat=]
000.cpp:31:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
000.cpp:33:23: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
ソースコード
#line 1 "000.cpp"
#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::cerr;
using std::endl;
using std::cin;
template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/formal_power_series.hpp"
#line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/formal_power_series.hpp"
template<class T>
class formal_power_series: public T {
public:
using T::T;
using value_type = typename T::value_type;
using reference = typename T::reference;
using const_reference = typename T::const_reference;
using size_type = typename T::size_type;
public:
formal_power_series(): T(1) {}
formal_power_series(const T& p): T(p) {}
public:
formal_power_series inverse() const {
assert((*this)[0] != value_type{});
formal_power_series ret(1, (*this)[0].inverse());
for(int i = 1; i < this->size(); i <<= 1) {
auto tmp = ret * this->prefix(i << 1);
for(int j = 0; j < i; j++) {
tmp[j] = value_type{};
if(j + i < tmp.size()) tmp[j + i] *= value_type(-1);
}
tmp = tmp * ret;
for(int j = 0; j < i; j++) tmp[j] = ret[j];
ret = std::move(tmp).prefix(i << 1);
}
return ret.prefix(this->size());
}
formal_power_series log() const {
assert((*this)[0] == value_type(1));
return (formal_power_series(this->differential()) * this->inverse()).integral().prefix(this->size());
}
formal_power_series exp() const {
assert((*this)[0] == value_type{});
formal_power_series f(1, value_type(1)), g(1, value_type(1));
for(int i = 1; i < this->size(); i <<= 1) {
g = (g * value_type(2) - f * g * g).prefix(i);
formal_power_series q = this->differential().prefix(i - 1);
formal_power_series w = (q + g * (f.differential() - f * q)).prefix((i << 1) - 1);
f = (f + f * (*this - w.integral()).prefix(i << 1)).prefix(i << 1);
}
return f.prefix(this->size());
}
formal_power_series pow(size_type k) const {
for(size_type i = 0; i < this->size(); i++) {
if((*this)[i] != value_type{}) {
value_type inv = (*this)[i].inverse();
formal_power_series f(*this * inv);
formal_power_series g(f >> i);
g = formal_power_series(g.log() * value_type(k)).exp() * (*this)[i].pow(k);
if(i * k > this->size()) return formal_power_series(this->size());
return (g << (i * k)).prefix(this->size());
}
}
return *this;
}
};
// @docs docs/formal_power_series.md
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/number_theoritic_transform.hpp"
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
template <std::uint_fast64_t Modulus>
class modint {
using u32 = std::uint_fast32_t;
using u64 = std::uint_fast64_t;
using i64 = std::int_fast64_t;
inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
u64 a;
static constexpr u64 mod = Modulus;
constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
constexpr modint operator-() const noexcept { return modint(Modulus - a); }
constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
constexpr modint& operator+=(const modint& rhs) noexcept {
a += rhs.a;
if (a >= Modulus) a -= Modulus;
return *this;
}
constexpr modint& operator-=(const modint& rhs) noexcept {
if (a < rhs.a) a += Modulus;
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint& rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) (*this) *= rhs;
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint& operator^=(u64 k) noexcept {
auto b = modint(1);
while(k) {
if(k & 1) b = b * (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = b;
}
constexpr modint& operator=(const modint& rhs) noexcept {
a = rhs.a;
return (*this);
}
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
explicit operator bool() const { return a; }
explicit operator u32() const { return a; }
const modint inverse() const {
return modint(1) / *this;
}
const modint pow(i64 k) const {
return modint(*this) ^ k;
}
friend std::ostream& operator<<(std::ostream& os, const modint& p) {
return os << p.a;
}
friend std::istream& operator>>(std::istream& is, modint& p) {
u64 t;
is >> t;
p = modint(t);
return is;
}
};
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/polynomial.hpp"
#line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/polynomial.hpp"
template<class T>
class polynomial: public std::vector<T> {
public:
using std::vector<T>::vector;
using value_type = typename std::vector<T>::value_type;
using reference = typename std::vector<T>::reference;
using const_reference = typename std::vector<T>::const_reference;
using size_type = typename std::vector<T>::size_type;
public:
T eval(T x) const {
T ret = (*this)[0], tmp = x;
for(int i = 1; i < this->size(); i++) {
ret = ret + (*this)[i] * tmp;
tmp = tmp * x;
}
return ret;
}
public:
polynomial(): std::vector<T>(1, T{}) {}
polynomial(const std::vector<T>& p): std::vector<T>(p) {}
polynomial operator+(const polynomial& r) const { return polynomial(*this) += r; }
polynomial operator-(const polynomial& r) const { return polynomial(*this) -= r; }
polynomial operator*(const_reference r) const { return polynomial(*this) *= r; }
polynomial operator/(const_reference r) const { return polynomial(*this) /= r; }
polynomial operator<<(size_type r) const { return polynomial(*this) <<= r; }
polynomial operator>>(size_type r) const { return polynomial(*this) >>= r; }
polynomial operator-() const {
polynomial ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
polynomial& operator+=(const polynomial& r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] + r[i];
return *this;
}
polynomial& operator-=(const polynomial& r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] - r[i];
return *this;
}
polynomial& operator*=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r;
return *this;
}
polynomial& operator/=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] / r;
return *this;
}
polynomial& operator<<=(size_type r) {
this->insert(begin(*this), r, T{});
return *this;
}
polynomial& operator>>=(size_type r) {
if(r >= this->size()) clear();
else this->erase(begin(*this), begin(*this) + r);
return *this;
}
polynomial differential(size_type k) const {
polynomial ret(*this);
for(int i = 0; i < k; i++) ret = ret.differential();
return ret;
}
polynomial differential() const {
if(degree() < 1) return polynomial();
polynomial ret(this->size() - 1);
for(int i = 1; i < this->size(); i++) ret[i - 1] = (*this)[i] * T{i};
return ret;
}
polynomial integral(size_type k) const {
polynomial ret(*this);
for(int i = 0; i < k; i++) ret = ret.integral();
return ret;
}
polynomial integral() const {
polynomial ret(this->size() + 1);
for(int i = 0; i < this->size(); i++) ret[i + 1] = (*this)[i] / T{i + 1};
return ret;
}
polynomial prefix(size_type size) const {
if(size == 0) return polynomial();
return polynomial(begin(*this), begin(*this) + std::min(this->size(), size));
}
void shrink() {
while(this->size() > 1 and this->back() == T{}) this->pop_back();
}
T operator()(T x) const { return eval(x); }
size_type degree() const { return this->size() - 1; }
void clear() { this->assign(1, T{}); }
};
#line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/number_theoritic_transform.hpp"
template<class T, int primitive_root = 3>
class number_theoritic_transform: public polynomial<T> {
public:
using polynomial<T>::polynomial;
using value_type = typename polynomial<T>::value_type;
using reference = typename polynomial<T>::reference;
using const_reference = typename polynomial<T>::const_reference;
using size_type = typename polynomial<T>::size_type;
private:
void ntt(number_theoritic_transform& a) const {
int N = a.size();
static std::vector<T> dw;
if(dw.size() < N) {
int n = dw.size();
dw.resize(N);
for(int i = n; i < N; i++) dw[i] = -(T(primitive_root) ^ ((T::mod - 1) >> i + 2));
}
for(int m = N; m >>= 1;) {
T w = 1;
for(int s = 0, k = 0; s < N; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
T x = a[i], y = a[j] * w;
a[i] = x + y;
a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(number_theoritic_transform& a) const {
int N = a.size();
static std::vector<T> idw;
if(idw.size() < N) {
int n = idw.size();
idw.resize(N);
for(int i = n; i < N; i++) idw[i] = (-(T(primitive_root) ^ ((T::mod - 1) >> i + 2))).inverse();
}
for(int m = 1; m < N; m *= 2) {
T w = 1;
for(int s = 0, k = 0; s < N; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
T x = a[i], y = a[j];
a[i] = x + y;
a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
}
void transform(number_theoritic_transform& a, bool inverse = false) const {
size_type n = 0;
while((1 << n) < a.size()) n++;
size_type N = 1 << n;
a.resize(N);
if(!inverse) {
ntt(a);
} else {
intt(a);
T inv = T(N).inverse();
for(int i = 0; i < a.size(); i++) a[i] *= inv;
}
}
number_theoritic_transform convolution(const number_theoritic_transform& ar, const number_theoritic_transform& br) const {
size_type size = ar.degree() + br.degree() + 1;
number_theoritic_transform a(ar), b(br);
a.resize(size);
b.resize(size);
transform(a, false);
transform(b, false);
for(int i = 0; i < a.size(); i++) a[i] *= b[i];
transform(a, true);
a.resize(size);
return a;
}
public:
number_theoritic_transform(const polynomial<T>& p): polynomial<T>(p) {}
number_theoritic_transform operator*(const_reference r) const { return number_theoritic_transform(*this) *= r; }
number_theoritic_transform& operator*=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r;
return *this;
}
number_theoritic_transform operator*(const number_theoritic_transform& r) const { return number_theoritic_transform(*this) *= r; }
number_theoritic_transform& operator*=(const number_theoritic_transform& r) {
return (*this) = convolution((*this), r);
}
};
// @docs docs/number_theoritic_transform.md
#line 19 "000.cpp"
using mint = modint<998244353>;
using fps = formal_power_series<number_theoritic_transform<mint>>;
struct frac {
number_theoritic_transform<mint> a, b;
frac operator+(const frac& r) {
return frac{a * r.b + b * r.a, b * r.b};
}
};
int main() {
int n, m; scanf("%d%d", &n, &m);
std::vector<int> a(n);
for(auto& v: a) scanf("%d", &v);
std::deque<frac> qu;
for(int i = 0; i < n; i++) qu.push_back(frac{{1}, {1, -a[i]}});
while(qu.size() > 1) {
auto A = qu.front(); qu.pop_front();
auto B = qu.front(); qu.pop_front();
qu.push_back(A + B);
}
fps b(std::max(n + 1, m + 1));
for(int i = 0; i < qu.front().b.size(); i++) b[i] = qu.front().b[i];
auto ans = qu.front().a * b.inverse();
for(int i = 1; i <= m; i++) printf("%lld ", ans[i].value());
printf("\n");
return 0;
}