結果
問題 | No.1145 Sums of Powers |
ユーザー | polylogK |
提出日時 | 2020-10-27 13:34:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 692 ms / 2,000 ms |
コード長 | 12,814 bytes |
コンパイル時間 | 2,769 ms |
コンパイル使用メモリ | 220,100 KB |
実行使用メモリ | 26,288 KB |
最終ジャッジ日時 | 2024-07-21 21:54:55 |
合計ジャッジ時間 | 5,204 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 683 ms
26,160 KB |
testcase_04 | AC | 692 ms
26,268 KB |
testcase_05 | AC | 690 ms
26,288 KB |
ソースコード
#line 1 "000.cpp" #include <bits/stdc++.h> using namespace std::literals::string_literals; using i64 = std::int_fast64_t; using std::cout; using std::cerr; using std::endl; using std::cin; template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);} template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts){ return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } #line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/formal_power_series.hpp" #line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/formal_power_series.hpp" template<class T> class formal_power_series: public T { public: using T::T; using value_type = typename T::value_type; using reference = typename T::reference; using const_reference = typename T::const_reference; using size_type = typename T::size_type; public: formal_power_series(): T(1) {} formal_power_series(const T& p): T(p) {} public: formal_power_series inverse() const { assert((*this)[0] != value_type{}); formal_power_series ret(1, (*this)[0].inverse()); for(int i = 1; i < this->size(); i <<= 1) { auto tmp = ret * this->prefix(i << 1); for(int j = 0; j < i; j++) { tmp[j] = value_type{}; if(j + i < tmp.size()) tmp[j + i] *= value_type(-1); } tmp = tmp * ret; for(int j = 0; j < i; j++) tmp[j] = ret[j]; ret = std::move(tmp).prefix(i << 1); } return ret.prefix(this->size()); } formal_power_series log() const { assert((*this)[0] == value_type(1)); return (formal_power_series(this->differential()) * this->inverse()).integral().prefix(this->size()); } formal_power_series exp() const { assert((*this)[0] == value_type{}); formal_power_series f(1, value_type(1)), g(1, value_type(1)); for(int i = 1; i < this->size(); i <<= 1) { g = (g * value_type(2) - f * g * g).prefix(i); formal_power_series q = this->differential().prefix(i - 1); formal_power_series w = (q + g * (f.differential() - f * q)).prefix((i << 1) - 1); f = (f + f * (*this - w.integral()).prefix(i << 1)).prefix(i << 1); } return f.prefix(this->size()); } formal_power_series pow(size_type k) const { for(size_type i = 0; i < this->size(); i++) { if((*this)[i] != value_type{}) { value_type inv = (*this)[i].inverse(); formal_power_series f(*this * inv); formal_power_series g(f >> i); g = formal_power_series(g.log() * value_type(k)).exp() * (*this)[i].pow(k); if(i * k > this->size()) return formal_power_series(this->size()); return (g << (i * k)).prefix(this->size()); } } return *this; } }; // @docs docs/formal_power_series.md #line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/number_theoritic_transform.hpp" #line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp" #line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp" template <std::uint_fast64_t Modulus> class modint { using u32 = std::uint_fast32_t; using u64 = std::uint_fast64_t; using i64 = std::int_fast64_t; inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); }; public: u64 a; static constexpr u64 mod = Modulus; constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {} constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; } constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); } constexpr modint operator-() const noexcept { return modint(Modulus - a); } constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; } constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; } const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; }; const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; }; const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; }; const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; }; const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; }; const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; }; constexpr modint& operator+=(const modint& rhs) noexcept { a += rhs.a; if (a >= Modulus) a -= Modulus; return *this; } constexpr modint& operator-=(const modint& rhs) noexcept { if (a < rhs.a) a += Modulus; a -= rhs.a; return *this; } constexpr modint& operator*=(const modint& rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint& operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) (*this) *= rhs; rhs *= rhs; exp /= 2; } return *this; } constexpr modint& operator^=(u64 k) noexcept { auto b = modint(1); while(k) { if(k & 1) b = b * (*this); (*this) *= (*this); k >>= 1; } return (*this) = b; } constexpr modint& operator=(const modint& rhs) noexcept { a = rhs.a; return (*this); } constexpr u64& value() noexcept { return a; } constexpr const u64& value() const noexcept { return a; } explicit operator bool() const { return a; } explicit operator u32() const { return a; } const modint inverse() const { return modint(1) / *this; } const modint pow(i64 k) const { return modint(*this) ^ k; } friend std::ostream& operator<<(std::ostream& os, const modint& p) { return os << p.a; } friend std::istream& operator>>(std::istream& is, modint& p) { u64 t; is >> t; p = modint(t); return is; } }; #line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/polynomial.hpp" #line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/polynomial.hpp" template<class T> class polynomial: public std::vector<T> { public: using std::vector<T>::vector; using value_type = typename std::vector<T>::value_type; using reference = typename std::vector<T>::reference; using const_reference = typename std::vector<T>::const_reference; using size_type = typename std::vector<T>::size_type; public: T eval(T x) const { T ret = (*this)[0], tmp = x; for(int i = 1; i < this->size(); i++) { ret = ret + (*this)[i] * tmp; tmp = tmp * x; } return ret; } public: polynomial(): std::vector<T>(1, T{}) {} polynomial(const std::vector<T>& p): std::vector<T>(p) {} polynomial operator+(const polynomial& r) const { return polynomial(*this) += r; } polynomial operator-(const polynomial& r) const { return polynomial(*this) -= r; } polynomial operator*(const_reference r) const { return polynomial(*this) *= r; } polynomial operator/(const_reference r) const { return polynomial(*this) /= r; } polynomial operator<<(size_type r) const { return polynomial(*this) <<= r; } polynomial operator>>(size_type r) const { return polynomial(*this) >>= r; } polynomial operator-() const { polynomial ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } polynomial& operator+=(const polynomial& r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] + r[i]; return *this; } polynomial& operator-=(const polynomial& r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] - r[i]; return *this; } polynomial& operator*=(const_reference r) { for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r; return *this; } polynomial& operator/=(const_reference r) { for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] / r; return *this; } polynomial& operator<<=(size_type r) { this->insert(begin(*this), r, T{}); return *this; } polynomial& operator>>=(size_type r) { if(r >= this->size()) clear(); else this->erase(begin(*this), begin(*this) + r); return *this; } polynomial differential(size_type k) const { polynomial ret(*this); for(int i = 0; i < k; i++) ret = ret.differential(); return ret; } polynomial differential() const { if(degree() < 1) return polynomial(); polynomial ret(this->size() - 1); for(int i = 1; i < this->size(); i++) ret[i - 1] = (*this)[i] * T{i}; return ret; } polynomial integral(size_type k) const { polynomial ret(*this); for(int i = 0; i < k; i++) ret = ret.integral(); return ret; } polynomial integral() const { polynomial ret(this->size() + 1); for(int i = 0; i < this->size(); i++) ret[i + 1] = (*this)[i] / T{i + 1}; return ret; } polynomial prefix(size_type size) const { if(size == 0) return polynomial(); return polynomial(begin(*this), begin(*this) + std::min(this->size(), size)); } void shrink() { while(this->size() > 1 and this->back() == T{}) this->pop_back(); } T operator()(T x) const { return eval(x); } size_type degree() const { return this->size() - 1; } void clear() { this->assign(1, T{}); } }; #line 6 "/home/ecasdqina/cpcpp/libs/library_cpp/math/number_theoritic_transform.hpp" template<class T, int primitive_root = 3> class number_theoritic_transform: public polynomial<T> { public: using polynomial<T>::polynomial; using value_type = typename polynomial<T>::value_type; using reference = typename polynomial<T>::reference; using const_reference = typename polynomial<T>::const_reference; using size_type = typename polynomial<T>::size_type; private: void ntt(number_theoritic_transform& a) const { int N = a.size(); static std::vector<T> dw; if(dw.size() < N) { int n = dw.size(); dw.resize(N); for(int i = n; i < N; i++) dw[i] = -(T(primitive_root) ^ ((T::mod - 1) >> i + 2)); } for(int m = N; m >>= 1;) { T w = 1; for(int s = 0, k = 0; s < N; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { T x = a[i], y = a[j] * w; a[i] = x + y; a[j] = x - y; } w *= dw[__builtin_ctz(++k)]; } } } void intt(number_theoritic_transform& a) const { int N = a.size(); static std::vector<T> idw; if(idw.size() < N) { int n = idw.size(); idw.resize(N); for(int i = n; i < N; i++) idw[i] = (-(T(primitive_root) ^ ((T::mod - 1) >> i + 2))).inverse(); } for(int m = 1; m < N; m *= 2) { T w = 1; for(int s = 0, k = 0; s < N; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { T x = a[i], y = a[j]; a[i] = x + y; a[j] = (x - y) * w; } w *= idw[__builtin_ctz(++k)]; } } } void transform(number_theoritic_transform& a, bool inverse = false) const { size_type n = 0; while((1 << n) < a.size()) n++; size_type N = 1 << n; a.resize(N); if(!inverse) { ntt(a); } else { intt(a); T inv = T(N).inverse(); for(int i = 0; i < a.size(); i++) a[i] *= inv; } } number_theoritic_transform convolution(const number_theoritic_transform& ar, const number_theoritic_transform& br) const { size_type size = ar.degree() + br.degree() + 1; number_theoritic_transform a(ar), b(br); a.resize(size); b.resize(size); transform(a, false); transform(b, false); for(int i = 0; i < a.size(); i++) a[i] *= b[i]; transform(a, true); a.resize(size); return a; } public: number_theoritic_transform(const polynomial<T>& p): polynomial<T>(p) {} number_theoritic_transform operator*(const_reference r) const { return number_theoritic_transform(*this) *= r; } number_theoritic_transform& operator*=(const_reference r) { for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r; return *this; } number_theoritic_transform operator*(const number_theoritic_transform& r) const { return number_theoritic_transform(*this) *= r; } number_theoritic_transform& operator*=(const number_theoritic_transform& r) { return (*this) = convolution((*this), r); } }; // @docs docs/number_theoritic_transform.md #line 19 "000.cpp" using mint = modint<998244353>; using fps = formal_power_series<number_theoritic_transform<mint>>; struct frac { number_theoritic_transform<mint> a, b; frac operator+(const frac& r) { return frac{a * r.b + b * r.a, b * r.b}; } }; int main() { int n, m; scanf("%d%d", &n, &m); std::vector<int> a(n); for(auto& v: a) scanf("%d", &v); std::deque<frac> qu; for(int i = 0; i < n; i++) qu.push_back(frac{{1}, {1, -a[i]}}); while(qu.size() > 1) { auto A = qu.front(); qu.pop_front(); auto B = qu.front(); qu.pop_front(); qu.push_back(A + B); } fps b(std::max(n + 1, m + 1)); for(int i = 0; i < qu.front().b.size(); i++) b[i] = qu.front().b[i]; auto ans = qu.front().a * b.inverse(); for(int i = 1; i <= m; i++) printf("%lld ", ans[i].value()); printf("\n"); return 0; }