結果

問題 No.1209 XOR Into You
ユーザー FF256grhyFF256grhy
提出日時 2020-10-30 17:37:45
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 339 ms / 2,000 ms
コード長 6,649 bytes
コンパイル時間 2,612 ms
コンパイル使用メモリ 229,756 KB
実行使用メモリ 22,568 KB
最終ジャッジ日時 2024-07-21 22:57:33
合計ジャッジ時間 14,005 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 80 ms
6,940 KB
testcase_05 AC 79 ms
6,940 KB
testcase_06 AC 95 ms
9,600 KB
testcase_07 AC 268 ms
19,728 KB
testcase_08 AC 237 ms
18,320 KB
testcase_09 AC 233 ms
18,316 KB
testcase_10 AC 176 ms
14,884 KB
testcase_11 AC 235 ms
18,020 KB
testcase_12 AC 214 ms
17,264 KB
testcase_13 AC 259 ms
18,740 KB
testcase_14 AC 206 ms
16,912 KB
testcase_15 AC 223 ms
17,488 KB
testcase_16 AC 209 ms
17,288 KB
testcase_17 AC 194 ms
16,760 KB
testcase_18 AC 339 ms
21,716 KB
testcase_19 AC 218 ms
17,160 KB
testcase_20 AC 263 ms
18,896 KB
testcase_21 AC 196 ms
14,552 KB
testcase_22 AC 222 ms
22,444 KB
testcase_23 AC 218 ms
22,568 KB
testcase_24 AC 222 ms
22,564 KB
testcase_25 AC 333 ms
22,440 KB
testcase_26 AC 335 ms
22,564 KB
testcase_27 AC 335 ms
22,444 KB
testcase_28 AC 321 ms
22,444 KB
testcase_29 AC 327 ms
22,444 KB
testcase_30 AC 318 ms
22,564 KB
testcase_31 AC 218 ms
16,296 KB
testcase_32 AC 217 ms
16,300 KB
testcase_33 AC 218 ms
16,296 KB
testcase_34 AC 221 ms
16,424 KB
testcase_35 AC 218 ms
16,292 KB
testcase_36 AC 221 ms
16,424 KB
testcase_37 AC 146 ms
16,172 KB
testcase_38 AC 254 ms
19,448 KB
testcase_39 AC 225 ms
17,992 KB
testcase_40 AC 220 ms
22,440 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incIX(i, 0, n)
#define dec(i, n)  decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x <  r); };
auto inXI = [](auto x, auto l, auto r) { return (l <  x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l <  x && x <  r); };
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
	if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS)      << flush; }

// ---- ----

template<typename T> class SegmentTree {
private:
	int n, s;
	vector<T> a;
	function<T(T &, T &)> f;
	T e;
	bool ok;
	void shift(int & p) {
		assert(inIX(p, 0, n));
		p += s;
	}
public:
	SegmentTree() { n = 0; }
	SegmentTree(int nn, function<T(T &, T &)> ff, T ee) { init(nn, ff, ee); }
	void init(int nn, function<T(T &, T &)> ff, T ee) {
		n = nn;
		f = ff;
		e = ee;
		s = 1;
		while(s < n) { s *= 2; }
		a = vector<T>(2 * s, e);
		ok = true;
	}
	void apply(int p, function<void(T &)> g) {
		shift(p);
		g(a[p]);
		while(p > 1) {
			p /= 2;
			a[p] = f(a[2 * p], a[2 * p + 1]);
		}
	}
	T fold_IX(int l, int r) {
		assert(ok);
		assert(inII(l, 0, n)); l += s;
		assert(inII(r, 0, n)); r += s; r--;
		T x = e, y = e;
		while(l <= r) {
			if(l % 2 == 1) { x = f(x, a[l]); l++; }
			if(r % 2 == 0) { y = f(a[r], y); r--; }
			l /= 2;
			r /= 2;
		}
		return f(x, y);
	}
	T fold_II(int l, int r) { return fold_IX(l + 0, r + 1); }
	T fold_XI(int l, int r) { return fold_IX(l + 1, r + 1); }
	T fold_XX(int l, int r) { return fold_IX(l + 1, r + 0); }
	const T & operator[](int p) {
		shift(p);
		return a[p];
	}
	T & ref(int p) {
		shift(p);
		ok = false;
		return a[p];
	}
	void calc() {
		dec(i, s) { a[i] = f(a[2 * i], a[2 * i + 1]); }
		ok = true;
	}
};
#define OP(s) [&](auto & A, auto & B) { return s; }
#define AP(s) [&](auto & A) { s; }

// ----

LL inversion_distance(vector<LL> const & a, vector<LL> const & b) {
	assert(SI(a) == SI(b));
	int n = SI(a);
	{
		auto aa = a, bb = b;
		sort(ALL(aa));
		sort(ALL(bb));
		if(aa != bb) { return -1; }
	}
	
	map<LL, int> c;
	map<pair<LL, int>, int> p;
	inc(i, n) { p[{ a[i], c[a[i]] }] = i; c[a[i]]++; }
	
	SegmentTree<LL> st(n, OP(A + B), 0);
	LL ans = 0;
	dec(i, n) {
		c[b[i]]--;
		int x = p[{ b[i], c[b[i]] }];
		ans += st.fold_IX(0, x);
		st.apply(x, AP(A++));
	}
	return ans;
}

int main() {
	auto f = [&](auto a, auto b) -> LL {
		if_not(a.FR == b.FR && a.BA == b.BA) { return -1; }
		int n = SI(a);
		vector<LL> aa(n - 1), bb(n - 1);
		inc(i, n - 1) { aa[i] = a[i] ^ a[i + 1]; }
		inc(i, n - 1) { bb[i] = b[i] ^ b[i + 1]; }
		return inversion_distance(aa, bb);
	};
	
	auto n = in<int>();
	auto a = vin<LL>(n);
	auto b = vin<LL>(n);
	out(f(a, b));
}
0