結果
問題 | No.1209 XOR Into You |
ユーザー | FF256grhy |
提出日時 | 2020-10-30 17:37:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 339 ms / 2,000 ms |
コード長 | 6,649 bytes |
コンパイル時間 | 2,612 ms |
コンパイル使用メモリ | 229,756 KB |
実行使用メモリ | 22,568 KB |
最終ジャッジ日時 | 2024-07-21 22:57:33 |
合計ジャッジ時間 | 14,005 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 80 ms
6,940 KB |
testcase_05 | AC | 79 ms
6,940 KB |
testcase_06 | AC | 95 ms
9,600 KB |
testcase_07 | AC | 268 ms
19,728 KB |
testcase_08 | AC | 237 ms
18,320 KB |
testcase_09 | AC | 233 ms
18,316 KB |
testcase_10 | AC | 176 ms
14,884 KB |
testcase_11 | AC | 235 ms
18,020 KB |
testcase_12 | AC | 214 ms
17,264 KB |
testcase_13 | AC | 259 ms
18,740 KB |
testcase_14 | AC | 206 ms
16,912 KB |
testcase_15 | AC | 223 ms
17,488 KB |
testcase_16 | AC | 209 ms
17,288 KB |
testcase_17 | AC | 194 ms
16,760 KB |
testcase_18 | AC | 339 ms
21,716 KB |
testcase_19 | AC | 218 ms
17,160 KB |
testcase_20 | AC | 263 ms
18,896 KB |
testcase_21 | AC | 196 ms
14,552 KB |
testcase_22 | AC | 222 ms
22,444 KB |
testcase_23 | AC | 218 ms
22,568 KB |
testcase_24 | AC | 222 ms
22,564 KB |
testcase_25 | AC | 333 ms
22,440 KB |
testcase_26 | AC | 335 ms
22,564 KB |
testcase_27 | AC | 335 ms
22,444 KB |
testcase_28 | AC | 321 ms
22,444 KB |
testcase_29 | AC | 327 ms
22,444 KB |
testcase_30 | AC | 318 ms
22,564 KB |
testcase_31 | AC | 218 ms
16,296 KB |
testcase_32 | AC | 217 ms
16,300 KB |
testcase_33 | AC | 218 ms
16,296 KB |
testcase_34 | AC | 221 ms
16,424 KB |
testcase_35 | AC | 218 ms
16,292 KB |
testcase_36 | AC | 221 ms
16,424 KB |
testcase_37 | AC | 146 ms
16,172 KB |
testcase_38 | AC | 254 ms
19,448 KB |
testcase_39 | AC | 225 ms
17,992 KB |
testcase_40 | AC | 220 ms
22,440 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incIX(i, l, r) for(LL i = (l) ; i < (r); i++) #define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decXI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incIX(i, 0, n) #define dec(i, n) decIX(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); }; auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); }; auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); }; auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); }; auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(c) c.begin(), c.end() #define RALL(c) c.rbegin(), c.rend() #define RV(c) reverse(ALL(c)) #define SC static_cast #define SI(c) SC<int>(c.size()) #define SL(c) SC<LL >(c.size()) #define RF(e, c) for(auto & e: c) #define SF(c, ...) for(auto & [__VA_ARGS__]: c) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) auto * IS = & cin; auto * OS = & cout; array<string, 3> SEQ = { "", " ", "" }; // input template<typename T> T in() { T a; (* IS) >> a; return a; } // input: tuple template<int I, typename U> void tin_(istream & is, U & t) { if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); } } template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; } template<typename ... T> auto tin() { return in<tuple<T ...>>(); } // input: array template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; } template<typename T, size_t N> auto ain() { return in<array<T, N>>(); } // input: multi-dimensional vector template<typename T> T vin() { T v; (* IS) >> v; return v; } template<typename T, typename N, typename ... M> auto vin(N n, M ... m) { vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v; } // input: multi-column (tuple<vector>) template<typename U, int I> void colin_([[maybe_unused]] U & t) { } template<typename U, int I, typename A, typename ... B> void colin_(U & t) { get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t); } template<typename ... T> auto colin(int n) { tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t; } // output void out_([[maybe_unused]] string s) { } template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; } template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; // output: multi-dimensional vector template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) { os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]); } template<typename T> void vout_(T && v) { (* OS) << v; } template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) { inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; } template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; } // ---- ---- template<typename T> class SegmentTree { private: int n, s; vector<T> a; function<T(T &, T &)> f; T e; bool ok; void shift(int & p) { assert(inIX(p, 0, n)); p += s; } public: SegmentTree() { n = 0; } SegmentTree(int nn, function<T(T &, T &)> ff, T ee) { init(nn, ff, ee); } void init(int nn, function<T(T &, T &)> ff, T ee) { n = nn; f = ff; e = ee; s = 1; while(s < n) { s *= 2; } a = vector<T>(2 * s, e); ok = true; } void apply(int p, function<void(T &)> g) { shift(p); g(a[p]); while(p > 1) { p /= 2; a[p] = f(a[2 * p], a[2 * p + 1]); } } T fold_IX(int l, int r) { assert(ok); assert(inII(l, 0, n)); l += s; assert(inII(r, 0, n)); r += s; r--; T x = e, y = e; while(l <= r) { if(l % 2 == 1) { x = f(x, a[l]); l++; } if(r % 2 == 0) { y = f(a[r], y); r--; } l /= 2; r /= 2; } return f(x, y); } T fold_II(int l, int r) { return fold_IX(l + 0, r + 1); } T fold_XI(int l, int r) { return fold_IX(l + 1, r + 1); } T fold_XX(int l, int r) { return fold_IX(l + 1, r + 0); } const T & operator[](int p) { shift(p); return a[p]; } T & ref(int p) { shift(p); ok = false; return a[p]; } void calc() { dec(i, s) { a[i] = f(a[2 * i], a[2 * i + 1]); } ok = true; } }; #define OP(s) [&](auto & A, auto & B) { return s; } #define AP(s) [&](auto & A) { s; } // ---- LL inversion_distance(vector<LL> const & a, vector<LL> const & b) { assert(SI(a) == SI(b)); int n = SI(a); { auto aa = a, bb = b; sort(ALL(aa)); sort(ALL(bb)); if(aa != bb) { return -1; } } map<LL, int> c; map<pair<LL, int>, int> p; inc(i, n) { p[{ a[i], c[a[i]] }] = i; c[a[i]]++; } SegmentTree<LL> st(n, OP(A + B), 0); LL ans = 0; dec(i, n) { c[b[i]]--; int x = p[{ b[i], c[b[i]] }]; ans += st.fold_IX(0, x); st.apply(x, AP(A++)); } return ans; } int main() { auto f = [&](auto a, auto b) -> LL { if_not(a.FR == b.FR && a.BA == b.BA) { return -1; } int n = SI(a); vector<LL> aa(n - 1), bb(n - 1); inc(i, n - 1) { aa[i] = a[i] ^ a[i + 1]; } inc(i, n - 1) { bb[i] = b[i] ^ b[i + 1]; } return inversion_distance(aa, bb); }; auto n = in<int>(); auto a = vin<LL>(n); auto b = vin<LL>(n); out(f(a, b)); }