結果

問題 No.230 Splarraay スプラレェーイ
ユーザー yuruhiyayuruhiya
提出日時 2020-10-30 19:21:09
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 98 ms / 5,000 ms
コード長 26,522 bytes
コンパイル時間 2,668 ms
コンパイル使用メモリ 212,580 KB
実行使用メモリ 15,060 KB
最終ジャッジ日時 2024-07-21 22:59:53
合計ジャッジ時間 3,763 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 6 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 44 ms
9,168 KB
testcase_10 AC 35 ms
5,376 KB
testcase_11 AC 26 ms
6,480 KB
testcase_12 AC 44 ms
9,168 KB
testcase_13 AC 8 ms
5,376 KB
testcase_14 AC 32 ms
15,060 KB
testcase_15 AC 73 ms
14,988 KB
testcase_16 AC 77 ms
14,972 KB
testcase_17 AC 98 ms
15,060 KB
testcase_18 AC 61 ms
15,060 KB
testcase_19 AC 64 ms
14,928 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/home/yuruhiya/programming/library/template/template.cpp"
#include <bits/stdc++.h>
#line 6 "/home/yuruhiya/programming/library/template/constants.cpp"
using namespace std;

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define FOR(i, m, n) for (int i = (m); i < (n); ++i)
#define rrep(i, n) for (int i = (n)-1; i >= 0; --i)
#define rfor(i, m, n) for (int i = (m); i >= (n); --i)
#define unless(c) if (!(c))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define range_it(a, l, r) (a).begin() + (l), (a).begin() + (r)

using namespace std;
using ll = long long;
using LD = long double;
using VB = vector<bool>;
using VVB = vector<VB>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VS = vector<string>;
using VD = vector<LD>;
using PII = pair<int, int>;
using VP = vector<PII>;
using PLL = pair<ll, ll>;
using VPL = vector<PLL>;
template <class T> using PQ = priority_queue<T>;
template <class T> using PQS = priority_queue<T, vector<T>, greater<T>>;
constexpr int inf = 1e9;
constexpr long long inf_ll = 1e18, MOD = 1000000007;
constexpr long double PI = 3.14159265358979323846, EPS = 1e-12;
#line 7 "/home/yuruhiya/programming/library/template/Input.cpp"
using namespace std;

#ifdef _WIN32
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#define fwrite_unlocked fwrite
#define fflush_unlocked fflush
#endif
class Input {
	static int gc() {
		return getchar_unlocked();
	}
	template <class T> static void i(T& v) {
		cin >> v;
	}
	static void i(char& v) {
		while (isspace(v = gc()))
			;
	}
	static void i(bool& v) {
		v = in<char>() != '0';
	}
	static void i(string& v) {
		v.clear();
		char c;
		for (i(c); !isspace(c); c = gc())
			v += c;
	}
	static void i(int& v) {
		bool neg = false;
		v = 0;
		char c;
		i(c);
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc())
			v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void i(long long& v) {
		bool neg = false;
		v = 0;
		char c;
		i(c);
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c); c = gc())
			v = v * 10 + (c - '0');
		if (neg) v = -v;
	}
	static void i(double& v) {
		double dp = 1;
		bool neg = false, adp = false;
		v = 0;
		char c;
		i(c);
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.')
				adp = true;
			else if (adp)
				v += (c - '0') * (dp *= 0.1);
			else
				v = v * 10 + (c - '0');
		}
		if (neg) v = -v;
	}
	static void i(long double& v) {
		long double dp = 1;
		bool neg = false, adp = false;
		v = 0;
		char c;
		i(c);
		if (c == '-') {
			neg = true;
			c = gc();
		}
		for (; isdigit(c) || c == '.'; c = gc()) {
			if (c == '.')
				adp = true;
			else if (adp)
				v += (c - '0') * (dp *= 0.1);
			else
				v = v * 10 + (c - '0');
		}
		if (neg) v = -v;
	}
	template <class T, class U> static void i(pair<T, U>& v) {
		i(v.first);
		i(v.second);
	}
	template <class T> static void i(vector<T>& v) {
		for (auto& e : v)
			i(e);
	}
	template <size_t N = 0, class T> static void input_tuple(T& v) {
		if constexpr (N < tuple_size_v<T>) {
			i(get<N>(v));
			input_tuple<N + 1>(v);
		}
	}
	template <class... T> static void i(tuple<T...>& v) {
		input_tuple(v);
	}
	struct InputV {
		int n, m;
		InputV(int _n) : n(_n), m(0) {}
		InputV(const pair<int, int>& nm) : n(nm.first), m(nm.second) {}
		template <class T> operator vector<T>() {
			vector<T> v(n);
			i(v);
			return v;
		}
		template <class T> operator vector<vector<T>>() {
			vector<vector<T>> v(n, vector<T>(m));
			i(v);
			return v;
		}
	};

public:
	static string read_line() {
		string v;
		char c;
		for (i(c); c != '\n' && c != '\0'; c = gc())
			v += c;
		return v;
	}
	template <class T> static T in() {
		T v;
		i(v);
		return v;
	}
	template <class T> operator T() const {
		return in<T>();
	}
	int operator--(int) const {
		return in<int>() - 1;
	}
	InputV operator[](int n) const {
		return InputV(n);
	}
	InputV operator[](const pair<int, int>& n) const {
		return InputV(n);
	}
	void operator()() const {}
	template <class H, class... T> void operator()(H&& h, T&&... t) const {
		i(h);
		operator()(forward<T>(t)...);
	}

private:
	template <template <class...> class, class...> struct Multiple;
	template <template <class...> class V, class Head, class... Tail> struct Multiple<V, Head, Tail...> {
		template <class... Args> using vec = V<vector<Head>, Args...>;
		using type = typename Multiple<vec, Tail...>::type;
	};
	template <template <class...> class V> struct Multiple<V> { using type = V<>; };
	template <class... T> using multiple_t = typename Multiple<tuple, T...>::type;
	template <size_t N = 0, class T> void in_multiple(T& t) const {
		if constexpr (N < tuple_size_v<T>) {
			auto& vec = get<N>(t);
			using V = typename remove_reference_t<decltype(vec)>::value_type;
			vec.push_back(in<V>());
			in_multiple<N + 1>(t);
		}
	}

public:
	template <class... T> auto multiple(int H) const {
		multiple_t<T...> res;
		while (H--)
			in_multiple(res);
		return res;
	}
} in;
#define input(T) Input::in<T>()
#define INT input(int)
#define LL input(long long)
#define STR input(string)
#define inputs(T, ...) \
	T __VA_ARGS__;     \
	in(__VA_ARGS__)
#define ini(...) inputs(int, __VA_ARGS__)
#define inl(...) inputs(long long, __VA_ARGS__)
#define ins(...) inputs(string, __VA_ARGS__)
#line 6 "/home/yuruhiya/programming/library/template/Output.cpp"
#include <charconv>
#line 9 "/home/yuruhiya/programming/library/template/Output.cpp"
using namespace std;

struct BoolStr {
	const char *t, *f;
	BoolStr(const char* _t, const char* _f) : t(_t), f(_f) {}
} Yes("Yes", "No"), yes("yes", "no"), YES("YES", "NO"), Int("1", "0");
struct DivStr {
	const char *d, *l;
	DivStr(const char* _d, const char* _l) : d(_d), l(_l) {}
} spc(" ", "\n"), no_spc("", "\n"), end_line("\n", "\n"), comma(",", "\n"), no_endl(" ", "");
class Output {
	BoolStr B{Yes};
	DivStr D{spc};
	void p(int v) const {
		char buf[12]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void p(long long v) const {
		char buf[21]{};
		if (auto [ptr, e] = to_chars(begin(buf), end(buf), v); e == errc{}) {
			fwrite(buf, sizeof(char), ptr - buf, stdout);
		} else {
			assert(false);
		}
	}
	void p(bool v) const {
		p(v ? B.t : B.f);
	}
	void p(char v) const {
		putchar_unlocked(v);
	}
	void p(const char* v) const {
		fwrite_unlocked(v, 1, strlen(v), stdout);
	}
	void p(double v) const {
		printf("%.20f", v);
	}
	void p(long double v) const {
		printf("%.20Lf", v);
	}
	template <class T> void p(const T& v) const {
		cout << v;
	}
	template <class T, class U> void p(const pair<T, U>& v) const {
		p(v.first);
		p(D.d);
		p(v.second);
	}
	template <class T> void p(const vector<T>& v) const {
		rep(i, sz(v)) {
			if (i) p(D.d);
			p(v[i]);
		}
	}
	template <class T> void p(const vector<vector<T>>& v) const {
		rep(i, sz(v)) {
			if (i) p(D.l);
			p(v[i]);
		}
	}

public:
	Output& operator()() {
		p(D.l);
		return *this;
	}
	template <class H> Output& operator()(H&& h) {
		p(h);
		p(D.l);
		return *this;
	}
	template <class H, class... T> Output& operator()(H&& h, T&&... t) {
		p(h);
		p(D.d);
		return operator()(forward<T>(t)...);
	}
	template <class It> Output& range(const It& l, const It& r) {
		for (It i = l; i != r; i++) {
			if (i != l) p(D.d);
			p(*i);
		}
		p(D.l);
		return *this;
	}
	template <class T> Output& range(const T& a) {
		range(a.begin(), a.end());
		return *this;
	}
	template <class... T> void exit(T&&... t) {
		operator()(forward<T>(t)...);
		std::exit(EXIT_SUCCESS);
	}
	Output& flush() {
		fflush_unlocked(stdout);
		return *this;
	}
	Output& set(const BoolStr& b) {
		B = b;
		return *this;
	}
	Output& set(const DivStr& d) {
		D = d;
		return *this;
	}
	Output& set(const char* t, const char* f) {
		B = BoolStr(t, f);
		return *this;
	}
} out;
#line 3 "/home/yuruhiya/programming/library/template/Step.cpp"
using namespace std;

template <class T> struct Step {
	class It {
		T a, b, c;

	public:
		constexpr It() : a(T()), b(T()), c(T()) {}
		constexpr It(T _b, T _c, T _s) : a(_b), b(_c), c(_s) {}
		constexpr It& operator++() {
			--b;
			a += c;
			return *this;
		}
		constexpr It operator++(int) {
			It tmp = *this;
			--b;
			a += c;
			return tmp;
		}
		constexpr const T& operator*() const {
			return a;
		}
		constexpr const T* operator->() const {
			return &a;
		}
		constexpr bool operator==(const It& i) const {
			return b == i.b;
		}
		constexpr bool operator!=(const It& i) const {
			return !(b == i.b);
		}
		constexpr T start() const {
			return a;
		}
		constexpr T size() const {
			return b;
		}
		constexpr T step() const {
			return c;
		}
	};
	constexpr Step(T b, T c, T s) : be(b, c, s) {}
	constexpr It begin() const {
		return be;
	}
	constexpr It end() const {
		return en;
	}
	constexpr T start() const {
		return be.start();
	}
	constexpr T size() const {
		return be.size();
	}
	constexpr T step() const {
		return be.step();
	}
	constexpr T sum() const {
		return start() * size() + step() * (size() * (size() - 1) / 2);
	}
	operator vector<T>() const {
		return to_a();
	}
	auto to_a() const {
		vector<T> res;
		res.reserve(size());
		for (auto i : *this) {
			res.push_back(i);
		}
		return res;
	}
	using value_type = T;
	using iterator = It;

private:
	It be, en;
};
template <class T> inline constexpr auto step(T a) {
	return Step<T>(0, a, 1);
}
template <class T> inline constexpr auto step(T a, T b) {
	return Step<T>(a, b - a, 1);
}
template <class T> inline constexpr auto step(T a, T b, T c) {
	return Step<T>(a, a < b ? (b - a - 1) / c + 1 : 0, c);
}
#line 8 "/home/yuruhiya/programming/library/template/Ruby.cpp"
using namespace std;

template <class F> struct Callable {
	F func;
	Callable(const F& f) : func(f) {}
};
template <class T, class F> auto operator|(const T& v, const Callable<F>& c) {
	return c.func(v);
}

struct Sort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const Sort_impl& c) {
		sort(begin(v), end(v));
		return v;
	}
} Sort;
struct SortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), [&](const auto& i, const auto& j) {
				return f(i) < f(j);
			});
			return v;
		});
	}
} SortBy;
struct RSort_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(rbegin(v), rend(v), f);
			return v;
		});
	}
	template <class T> friend auto operator|(T v, [[maybe_unused]] const RSort_impl& c) {
		sort(rbegin(v), rend(v));
		return v;
	}
} RSort;
struct RSortBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			sort(begin(v), end(v), [&](const auto& i, const auto& j) {
				return f(i) > f(j);
			});
			return v;
		});
	}
} RSortBy;
struct Reverse_impl {
	template <class T> friend auto operator|(T v, const Reverse_impl& c) {
		reverse(begin(v), end(v));
		return v;
	}
} Reverse;
struct Unique_impl {
	template <class T> friend auto operator|(T v, const Unique_impl& c) {
		v.erase(unique(begin(v), end(v), end(v)));
		return v;
	}
} Unique;
struct Uniq_impl {
	template <class T> friend auto operator|(T v, const Uniq_impl& c) {
		sort(begin(v), end(v));
		v.erase(unique(begin(v), end(v)), end(v));
		return v;
	}
} Uniq;
struct Rotate_impl {
	auto operator()(int&& left) {
		return Callable([&](auto v) {
			int s = static_cast<int>(size(v));
			assert(-s <= left && left <= s);
			if (0 <= left) {
				rotate(begin(v), begin(v) + left, end(v));
			} else {
				rotate(begin(v), end(v) + left, end(v));
			}
			return v;
		});
	}
} Rotate;
struct Max_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			return *max_element(begin(v), end(v), f);
		});
	}
	template <class T> friend auto operator|(T v, const Max_impl& c) {
		return *max_element(begin(v), end(v));
	}
} Max;
struct Min_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			return *min_element(begin(v), end(v), f);
		});
	}
	template <class T> friend auto operator|(T v, const Min_impl& c) {
		return *min_element(begin(v), end(v));
	}
} Min;
struct MaxPos_impl {
	template <class T> friend auto operator|(T v, const MaxPos_impl& c) {
		return max_element(begin(v), end(v)) - begin(v);
	}
} MaxPos;
struct MinPos_impl {
	template <class T> friend auto operator|(T v, const MinPos_impl& c) {
		return min_element(begin(v), end(v)) - begin(v);
	}
} MinPos;
struct MaxBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_it = begin(v);
			auto max_val = f(*max_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_it = it;
					max_val = val;
				}
			}
			return *max_it;
		});
	}
} MaxBy;
struct MinBy_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_it = begin(v);
			auto min_val = f(*min_it);
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_it = it;
					min_val = val;
				}
			}
			return *min_it;
		});
	}
} MinBy;
struct MaxOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto max_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); max_val < val) {
					max_val = val;
				}
			}
			return max_val;
		});
	}
} MaxOf;
struct MinOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			auto min_val = f(*begin(v));
			for (auto it = next(begin(v)); it != end(v); ++it) {
				if (auto val = f(*it); min_val > val) {
					min_val = val;
				}
			}
			return min_val;
		});
	}
} MinOf;
struct Count_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) {
			return count(begin(v), end(v), val);
		});
	}
} Count;
struct CountIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) {
			return count_if(begin(v), end(v), f);
		});
	}
} CountIf;
struct Index_impl {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) -> optional<int> {
			auto res = find(begin(v), end(v), val);
			return res != end(v) ? optional(res - begin(v)) : nullopt;
		});
	}
} Index;
struct IndexIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<int> {
			auto res = find_if(begin(v), end(v), f);
			return res != end(v) ? optional(res - begin(v)) : nullopt;
		});
	}
} IndexIf;
struct FindIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) -> optional<typename decltype(v)::value_type> {
			auto res = find_if(begin(v), end(v), f);
			return res != end(v) ? optional(*res) : nullopt;
		});
	}
} FindIf;
struct Sum_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			return accumulate(next(begin(v)), end(v), f(*begin(v)), [&](const auto& a, const auto& b) {
				return a + f(b);
			});
		});
	}
	template <class T> friend auto operator|(T v, const Sum_impl& c) {
		return accumulate(begin(v), end(v), typename T::value_type{});
	}
} Sum;
struct Includes {
	template <class V> auto operator()(const V& val) {
		return Callable([&](auto v) {
			return find(begin(v), end(v), val) != end(v);
		});
	}
} Includes;
struct IncludesIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) {
			return find_if(begin(v), end(v), f) != end(v);
		});
	}
} IncludesIf;
struct RemoveIf_impl {
	template <class F> auto operator()(const F& f) {
		return Callable([&](auto v) {
			v.erase(remove_if(begin(v), end(v), f), end(v));
			return v;
		});
	}
} RemoveIf;
struct Each_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				f(i);
			}
		});
	}
} Each;
struct Select_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using value_type = typename decltype(v)::value_type;
			vector<value_type> res;
			for (const auto& i : v) {
				if (f(i)) res.push_back(i);
			}
			return res;
		});
	}
} Select;
struct Map_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			using result_type = invoke_result_t<F, typename decltype(v)::value_type>;
			vector<result_type> res;
			res.reserve(size(v));
			for (const auto& i : v) {
				res.push_back(f(i));
			}
			return res;
		});
	}
} Map;
struct Indexed_impl {
	template <class T> friend auto operator|(const T& v, Indexed_impl& c) {
		using value_type = typename T::value_type;
		vector<pair<value_type, int>> res;
		res.reserve(size(v));
		int index = 0;
		for (const auto& i : v) {
			res.emplace_back(i, index++);
		}
		return res;
	}
} Indexed;
struct AllOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (!f(i)) return false;
			}
			return true;
		});
	}
} AllOf;
struct AnyOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return true;
			}
			return false;
		});
	}
} AnyOf;
struct NoneOf_impl {
	template <class F> auto operator()(F&& f) {
		return Callable([&](auto v) {
			for (const auto& i : v) {
				if (f(i)) return false;
			}
			return true;
		});
	}
} NoneOf;

struct Tally_impl {
	template <class F> auto operator()(size_t max_val) {
		return Callable([&](auto v) {
			vector<size_t> res(max_val);
			for (const auto& i : v) {
				res[static_cast<size_t>(i)]++;
			}
			return res;
		});
	}
	template <class T, class value_type = typename T::value_type> friend auto operator|(const T& v, Tally_impl& c) {
		map<value_type, size_t> res;
		for (const auto& i : v) {
			res[i]++;
		}
		return res;
	}
} Tally;

template <class T> auto operator*(const vector<T>& a, size_t n) {
	T res;
	for (size_t i = 0; i < n; ++i) {
		res.insert(res.end(), a.begin(), a.end());
	}
	return res;
}
auto operator*(string a, size_t n) {
	string res;
	for (size_t i = 0; i < n; ++i) {
		res += a;
	}
	return res;
}
template <class T, class U> auto& operator<<(vector<T>& a, const U& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T> auto& operator<<(string& a, const T& b) {
	a.insert(a.end(), all(b));
	return a;
}
template <class T, class U> auto operator+(vector<T> a, const U& b) {
	a << b;
	return a;
}
template <class T> auto operator+(string a, const T& b) {
	a << b;
	return a;
}
#line 6 "/home/yuruhiya/programming/library/template/functions.cpp"
using namespace std;

template <class T, class U> inline int Lower(const T& a, const U& v) {
	return lower_bound(all(a), v) - a.begin();
}
template <class T, class U> inline int Upper(const T& a, const U& v) {
	return upper_bound(all(a), v) - a.begin();
}
template <class T> inline auto Slice(const T& v, size_t i, size_t len) {
	return i < v.size() ? T(v.begin() + i, v.begin() + min(i + len, v.size())) : T();
}
template <class T> inline T Ceil(T n, T m) {
	return (n + m - 1) / m;
}
template <class T> inline T Ceil2(T n, T m) {
	return Ceil(n, m) * m;
}
template <class T> inline T Tri(T n) {
	return (n & 1) ? (n + 1) / 2 * n : n / 2 * (n + 1);
}
template <class T> inline T nC2(T n) {
	return (n & 1) ? (n - 1) / 2 * n : n / 2 * (n - 1);
}
template <class T> inline T Mid(const T& l, const T& r) {
	return l + (r - l) / 2;
}
template <class T> inline bool chmax(T& a, const T& b) {
	if (a < b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> inline bool chmin(T& a, const T& b) {
	if (a > b) {
		a = b;
		return true;
	}
	return false;
}
template <class T> inline bool inRange(const T& v, const T& min, const T& max) {
	return min <= v && v < max;
}
template <class T> inline bool isSquere(T n) {
	T s = sqrt(n);
	return s * s == n || (s + 1) * (s + 1) == n;
}
template <class T = long long> inline T BIT(int b) {
	return T(1) << b;
}
template <class T, class U = typename T::value_type> inline U Gcdv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), gcd<U, U>);
}
template <class T, class U = typename T::value_type> inline U Lcmv(const T& v) {
	return accumulate(next(v.begin()), v.end(), U(*v.begin()), lcm<U, U>);
}
template <class T> inline T Pow(T a, T n) {
	T r = 1;
	while (n > 0) {
		if (n & 1) r *= a;
		a *= a;
		n /= 2;
	}
	return r;
}
template <class T> inline T Powmod(T a, T n, T m = MOD) {
	T r = 1;
	while (n > 0) {
		if (n & 1)
			r = r * a % m, n--;
		else
			a = a * a % m, n /= 2;
	}
	return r;
}
#line 9 "/home/yuruhiya/programming/library/template/template.cpp"
#if __has_include(<library/dump.hpp>)
#include <library/dump.hpp>
#define LOCAL
#else
#define dump(...) ((void)0)
#endif
#line 1 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"



#line 1 "/home/yuruhiya/programming/library/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

	namespace internal {

		// @param n `0 <= n`
		// @return minimum non-negative `x` s.t. `n <= 2**x`
		int ceil_pow2(int n) {
			int x = 0;
			while ((1U << x) < (unsigned int)(n))
				x++;
			return x;
		}

		// @param n `1 <= n`
		// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
		int bsf(unsigned int n) {
#ifdef _MSC_VER
			unsigned long index;
			_BitScanForward(&index, n);
			return index;
#else
			return __builtin_ctz(n);
#endif
		}

	}  // namespace internal

}  // namespace atcoder


#line 9 "/home/yuruhiya/programming/library/atcoder/lazysegtree.hpp"
namespace atcoder {

	template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
	struct lazy_segtree {
	public:
		lazy_segtree() : lazy_segtree(0) {}
		lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
		lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
			log = internal::ceil_pow2(_n);
			size = 1 << log;
			d = std::vector<S>(2 * size, e());
			lz = std::vector<F>(size, id());
			for (int i = 0; i < _n; i++)
				d[size + i] = v[i];
			for (int i = size - 1; i >= 1; i--) {
				update(i);
			}
		}

		void set(int p, S x) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			d[p] = x;
			for (int i = 1; i <= log; i++)
				update(p >> i);
		}

		S get(int p) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			return d[p];
		}

		S prod(int l, int r) {
			assert(0 <= l && l <= r && r <= _n);
			if (l == r) return e();

			l += size;
			r += size;

			for (int i = log; i >= 1; i--) {
				if (((l >> i) << i) != l) push(l >> i);
				if (((r >> i) << i) != r) push(r >> i);
			}

			S sml = e(), smr = e();
			while (l < r) {
				if (l & 1) sml = op(sml, d[l++]);
				if (r & 1) smr = op(d[--r], smr);
				l >>= 1;
				r >>= 1;
			}

			return op(sml, smr);
		}

		S all_prod() {
			return d[1];
		}

		void apply(int p, F f) {
			assert(0 <= p && p < _n);
			p += size;
			for (int i = log; i >= 1; i--)
				push(p >> i);
			d[p] = mapping(f, d[p]);
			for (int i = 1; i <= log; i++)
				update(p >> i);
		}
		void apply(int l, int r, F f) {
			assert(0 <= l && l <= r && r <= _n);
			if (l == r) return;

			l += size;
			r += size;

			for (int i = log; i >= 1; i--) {
				if (((l >> i) << i) != l) push(l >> i);
				if (((r >> i) << i) != r) push((r - 1) >> i);
			}

			{
				int l2 = l, r2 = r;
				while (l < r) {
					if (l & 1) all_apply(l++, f);
					if (r & 1) all_apply(--r, f);
					l >>= 1;
					r >>= 1;
				}
				l = l2;
				r = r2;
			}

			for (int i = 1; i <= log; i++) {
				if (((l >> i) << i) != l) update(l >> i);
				if (((r >> i) << i) != r) update((r - 1) >> i);
			}
		}

		template <bool (*g)(S)> int max_right(int l) {
			return max_right(l, [](S x) {
				return g(x);
			});
		}
		template <class G> int max_right(int l, G g) {
			assert(0 <= l && l <= _n);
			assert(g(e()));
			if (l == _n) return _n;
			l += size;
			for (int i = log; i >= 1; i--)
				push(l >> i);
			S sm = e();
			do {
				while (l % 2 == 0)
					l >>= 1;
				if (!g(op(sm, d[l]))) {
					while (l < size) {
						push(l);
						l = (2 * l);
						if (g(op(sm, d[l]))) {
							sm = op(sm, d[l]);
							l++;
						}
					}
					return l - size;
				}
				sm = op(sm, d[l]);
				l++;
			} while ((l & -l) != l);
			return _n;
		}

		template <bool (*g)(S)> int min_left(int r) {
			return min_left(r, [](S x) {
				return g(x);
			});
		}
		template <class G> int min_left(int r, G g) {
			assert(0 <= r && r <= _n);
			assert(g(e()));
			if (r == 0) return 0;
			r += size;
			for (int i = log; i >= 1; i--)
				push((r - 1) >> i);
			S sm = e();
			do {
				r--;
				while (r > 1 && (r % 2))
					r >>= 1;
				if (!g(op(d[r], sm))) {
					while (r < size) {
						push(r);
						r = (2 * r + 1);
						if (g(op(d[r], sm))) {
							sm = op(d[r], sm);
							r--;
						}
					}
					return r + 1 - size;
				}
				sm = op(d[r], sm);
			} while ((r & -r) != r);
			return 0;
		}

	private:
		int _n, size, log;
		std::vector<S> d;
		std::vector<F> lz;

		void update(int k) {
			d[k] = op(d[2 * k], d[2 * k + 1]);
		}
		void all_apply(int k, F f) {
			d[k] = mapping(f, d[k]);
			if (k < size) lz[k] = composition(f, lz[k]);
		}
		void push(int k) {
			all_apply(2 * k, lz[k]);
			all_apply(2 * k + 1, lz[k]);
			lz[k] = id();
		}
	};

}  // namespace atcoder


#line 3 "a.cpp"

struct S {
	long long value;
	int size;
};
using F = long long;
const F ID = 8e18;
S op(S a, S b) {
	return {a.value + b.value, a.size + b.size};
}
S e() {
	return {0, 0};
}
S mapping(F f, S x) {
	if (f != ID) x.value = f * x.size;
	return x;
}
F composition(F f, F g) {
	return f == ID ? g : f;
}
F id() {
	return ID;
}
using RUQRSQ = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;

int main() {
	ini(n);
	RUQRSQ a(vector(n, S{0, 1})), b(vector(n, S{0, 1}));
	ll ans_a = 0, ans_b = 0;
	for (int q = in; q--;) {
		ini(x, l, r);
		r++;
		if (x == 0) {
			ll A = a.prod(l, r).value, B = b.prod(l, r).value;
			if (A > B) {
				ans_a += A;
			} else if (B > A) {
				ans_b += B;
			}
		} else if (x == 1) {
			a.apply(l, r, 1);
			b.apply(l, r, 0);
		} else if (x == 2) {
			a.apply(l, r, 0);
			b.apply(l, r, 1);
		}
	}
	out(ans_a + a.all_prod().value, ans_b + b.all_prod().value);
}
0