結果
| 問題 | No.1301 Strange Graph Shortest Path | 
| コンテスト | |
| ユーザー |  nok0 | 
| 提出日時 | 2020-10-30 22:10:16 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                RE
                                 
                             | 
| 実行時間 | - | 
| コード長 | 4,461 bytes | 
| コンパイル時間 | 295 ms | 
| コンパイル使用メモリ | 82,956 KB | 
| 実行使用メモリ | 314,308 KB | 
| 最終ジャッジ日時 | 2024-09-13 00:24:03 | 
| 合計ジャッジ時間 | 45,392 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 22 RE * 11 | 
ソースコード
import sys
import heapq
input = sys.stdin.readline
BIG = 10 ** 9
BIG *= 10
class mcf_graph_int_cost:
    """
    頂点数、及び、costの総和が、4294967295 (== (1 << 32) - 1) を超えない前提下での高速な実装。
    後者は超えても一応動く。
    """
    def __init__(self, n):
        self.n = n
        self.pos = []
        self.g = [[] for _ in range(n)]
    def add_edge(self, from_, to, cap, cost):
        # assert 0 <= from_ < self.n
        # assert 0 <= to < self.n
        m = len(self.pos)
        self.pos.append((from_, len(self.g[from_])))
        self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost))
        self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost))
        return m
    class edge:
        def __init__(self, from_, to, cap, flow, cost):
            self.from_ = from_
            self.to = to
            self.cap = cap
            self.flow = flow
            self.cost = cost
    def get_edge(self, i):
        _e = self.g[self.pos[i][0]][self.pos[i][1]]
        _re = self.g[_e.to][_e.rev]
        return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)
    def edges(self):
        ret = []
        for i in range(len(self.pos)):
            _e = self.g[self.pos[i][0]][self.pos[i][1]]
            _re = self.g[_e.to][_e.rev]
            ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost))
        return ret
    def _dual_ref(self):
        self.dist = [4294967295] * self.n
        self.pv = [-1] * self.n
        self.pe = [-1] * self.n
        self.vis = [False] * self.n
        que = [s]
        self.dist[s] = 0
        while que:
            v = heapq.heappop(que) & 4294967295
            if self.vis[v]:
                continue
            self.vis[v] = True
            if v == t:
                break
            for i in range(len(self.g[v])):
                e = self.g[v][i]
                if self.vis[e.to] or e.cap == 0:
                    continue
                cost = e.cost - self.dual[e.to] + self.dual[v]
                if self.dist[e.to] > self.dist[v] + cost:
                    self.dist[e.to] = self.dist[v] + cost
                    self.pv[e.to] = v
                    self.pe[e.to] = i
                    heapq.heappush(que, ((self.dist[e.to] << 32) + e.to))
        if not self.vis[t]:
            return False
        for v in range(self.n):
            if not self.vis[v]:
                continue
            self.dual[v] -= self.dist[t] - self.dist[v]
        return True
    def slope(self, s, t, flow_limit=4294967295):
        # assert 0 <= s < self.n
        # assert 0 <= t < self.n
        # assert s != t
        self.dual = [0] * self.n
        self.dist = [4294967295] * self.n
        self.pv = [-1] * self.n
        self.pe = [-1] * self.n
        self.vis = [False] * self.n
        flow = 0
        cost = 0
        prev_cost = -1
        result = [(flow, cost)]
        while flow < flow_limit:
            if not self._dual_ref():
                break
            c = flow_limit - flow
            v = t
            while v != s:
                c = min(c, self.g[self.pv[v]][self.pe[v]].cap)
                v = self.pv[v]
            v = t
            while v != s:
                e = self.g[self.pv[v]][self.pe[v]]
                e.cap -= c
                self.g[v][e.rev].cap += c
                v = self.pv[v]
            d = -self.dual[s]
            flow += c
            cost += c * d
            if prev_cost == d:
                result.pop()
            result.append((flow, cost))
            prev_cost = cost
        return result
    def flow(self, s, t, flow_limit=4294967295):
        return self.slope(s, t, flow_limit)[-1]
    class _edge:
        def __init__(self, to, rev, cap, cost):
            self.to = to
            self.rev = rev
            self.cap = cap
            self.cost = cost
n, m = map(int, input().split())
s, t, w = 0, n - 1, n
graph = mcf_graph_int_cost(n + 2 * m)
def add(u, v, c, d):
    global w
    graph.add_edge(u, w, 2, c)
    graph.add_edge(w, v, 1, 0)
    graph.add_edge(w, v, 1, d - c)
    w += 1
for i in range(m):
    u, v, c, d = map(int, input().split())
    # assert 1 <= u <= n and 1 <= v <= n and c <= d
    u -= 1
    v -= 1
    add(u, v, c, d)
    add(v, u, c, d)
flow, cost = graph.flow(s, t, 2)
assert flow == 2
print(cost)
            
            
            
        