結果

問題 No.1276 3枚のカード
ユーザー LayCurseLayCurse
提出日時 2020-10-30 22:22:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,686 ms / 2,000 ms
コード長 6,095 bytes
コンパイル時間 2,552 ms
コンパイル使用メモリ 210,964 KB
実行使用メモリ 4,380 KB
最終ジャッジ日時 2023-09-29 06:50:42
合計ジャッジ時間 53,016 ms
ジャッジサーバーID
(参考情報)
judge14 / judge15
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,380 KB
testcase_01 AC 2 ms
4,376 KB
testcase_02 AC 1 ms
4,376 KB
testcase_03 AC 2 ms
4,376 KB
testcase_04 AC 2 ms
4,376 KB
testcase_05 AC 2 ms
4,376 KB
testcase_06 AC 1 ms
4,376 KB
testcase_07 AC 2 ms
4,376 KB
testcase_08 AC 2 ms
4,376 KB
testcase_09 AC 1 ms
4,380 KB
testcase_10 AC 1,420 ms
4,380 KB
testcase_11 AC 663 ms
4,380 KB
testcase_12 AC 848 ms
4,380 KB
testcase_13 AC 888 ms
4,376 KB
testcase_14 AC 76 ms
4,380 KB
testcase_15 AC 714 ms
4,380 KB
testcase_16 AC 1,551 ms
4,376 KB
testcase_17 AC 827 ms
4,380 KB
testcase_18 AC 621 ms
4,376 KB
testcase_19 AC 1,019 ms
4,376 KB
testcase_20 AC 589 ms
4,376 KB
testcase_21 AC 616 ms
4,380 KB
testcase_22 AC 1,577 ms
4,376 KB
testcase_23 AC 66 ms
4,376 KB
testcase_24 AC 967 ms
4,380 KB
testcase_25 AC 316 ms
4,376 KB
testcase_26 AC 1,199 ms
4,376 KB
testcase_27 AC 1,379 ms
4,376 KB
testcase_28 AC 1,328 ms
4,376 KB
testcase_29 AC 755 ms
4,380 KB
testcase_30 AC 140 ms
4,376 KB
testcase_31 AC 61 ms
4,376 KB
testcase_32 AC 340 ms
4,380 KB
testcase_33 AC 19 ms
4,380 KB
testcase_34 AC 232 ms
4,376 KB
testcase_35 AC 218 ms
4,380 KB
testcase_36 AC 12 ms
4,380 KB
testcase_37 AC 204 ms
4,380 KB
testcase_38 AC 133 ms
4,376 KB
testcase_39 AC 357 ms
4,380 KB
testcase_40 AC 1,507 ms
4,380 KB
testcase_41 AC 1,238 ms
4,376 KB
testcase_42 AC 1,342 ms
4,380 KB
testcase_43 AC 1,169 ms
4,380 KB
testcase_44 AC 1,670 ms
4,376 KB
testcase_45 AC 1,512 ms
4,376 KB
testcase_46 AC 1,507 ms
4,376 KB
testcase_47 AC 1,236 ms
4,380 KB
testcase_48 AC 1,187 ms
4,380 KB
testcase_49 AC 1,350 ms
4,376 KB
testcase_50 AC 1,492 ms
4,380 KB
testcase_51 AC 1,281 ms
4,380 KB
testcase_52 AC 1,095 ms
4,376 KB
testcase_53 AC 1,290 ms
4,376 KB
testcase_54 AC 1,493 ms
4,380 KB
testcase_55 AC 1,144 ms
4,380 KB
testcase_56 AC 1,111 ms
4,376 KB
testcase_57 AC 1,423 ms
4,380 KB
testcase_58 AC 1,482 ms
4,380 KB
testcase_59 AC 1,292 ms
4,380 KB
testcase_60 AC 1,686 ms
4,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class S, class T> inline S min_L(S a,T b){
  return a<=b?a:b;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
long long floor_sum2(long long a, long long k){
  long long i = 1;
  long long j;
  long long v;
  long long res = 0;
  if(k > a){
    k = a;
  }
  while(i <= k){
    v = a / i;
    j =min_L(k, a / v)+ 1;
    res += v * (j-i);
    i = j;
  }
  return res;
}
int main(){
  long long N;
  rd(N);
  long long i;
  long long j;
  long long k;
  Modint res = 0;
  for(i=1;i<=N;i++){
    k = N / i;
    j = N / k;
    res += Modint(j - i + 1) * (N - k + 1) * (k - 1);
    i = j;
  }
  for(i=1;i<=N;i++){
    k = N / i;
    j = N / k;
    res -= Modint(j-i+1) * (floor_sum2(k, k) - k);
    i = j;
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay varsion 20201026-1

// --- original code ---
// {
//   ll @N, i, j, k;
//   Modint res = 0;
// 
//   for(i=1;i<=N;i++){
//     k = N / i;
//     j = N / k;
//     res += Modint(j - i + 1) * (N - k + 1) * (k - 1);
//     i = j;
//   }
// 
//   for(i=1;i<=N;i++){
//     k = N / i;
//     j = N / k;
//     res -= Modint(j-i+1) * (floor_sum2(k, k) - k);
//     i = j;
//   }
//   wt(res);
// }
0