結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
Kite_kuma
|
| 提出日時 | 2020-10-30 23:23:10 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 21,005 bytes |
| コンパイル時間 | 2,334 ms |
| コンパイル使用メモリ | 199,004 KB |
| 実行使用メモリ | 44,644 KB |
| 最終ジャッジ日時 | 2024-09-13 00:33:39 |
| 合計ジャッジ時間 | 17,889 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 WA * 5 |
ソースコード
/* author: Kite_kuma
created: 2020.10.30 23:12:57 */
// #ifdef LOCAL
// #define _GLIBCXX_DEBUG
// #endif
#include <bits/stdc++.h>
using namespace std;
#pragma region aliases
#define rep(i, n) for(long long i = 0; i < (n); i++)
#define rrep(i, n) for(long long i = (n)-1; i > -1; i--)
#define Rep(i, m, n) for(long long i = (m); i < (n); i++)
#define rRep(i, m, n) for(long long i = (n)-1; i >= (m); i--)
#define REP(i, m, n, p) for(long long i = m; i < n; i += p)
#define foa(s, v) for(auto &s : v)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define bcnt(n) __builtin_popcountll(n)
#define endk endl
#define ednl endl
#define enld endl
using ll = long long;
using ld = long double;
using ull = unsigned long long;
using vb = vector<bool>;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vvvi = vector<vector<vector<int>>>;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using mll = map<long long, long long>;
using pll = pair<long long, long long>;
using qll = queue<long long>;
using sll = set<long long>;
using vpll = vector<pair<long long, long long>>;
template <class T = ll>
using V = vector<T>;
template <class T = ll>
using VV = V<V<T>>;
template <class T = ll>
using VVV = V<V<V<T>>>;
//昇順pq(小さい方から取り出す)
template <class T = ll>
using pqup = priority_queue<T, vector<T>, greater<T>>;
//降順pq(大きい方から取り出す)
template <class T = ll>
using pqdn = priority_queue<T>;
#pragma endregion
#pragma region constants
long long const limLL = 9223372036854775807; // POW(2,63)-1 ~ 9.22e18
long long const dekai = 3e16;
const long double pi = acos(-1);
const char dl = '\n';
int dx[8] = {1, 0, -1, 0, 1, 1, -1, -1};
int dy[8] = {0, 1, 0, -1, -1, 1, -1, 1};
const int mod = 1000000007;
// const int mod = 998244353;
#pragma endregion
#pragma region basic_procedure
template <class T>
inline bool isin(T x, T lef, T rig) {
return ((lef <= x) && (x < rig));
}
template <class T>
inline bool chmin(T &a, T b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if(a < b) {
a = b;
return true;
}
return false;
}
void Yes(bool f = 1) { cout << (f ? "Yes" : "No") << "\n"; }
void No() { cout << "No\n"; }
void YES(bool f = 1) { cout << (f ? "YES" : "NO") << "\n"; }
void NO() { cout << "NO\n"; }
template <class T>
void drop(T answer) {
cout << answer << "\n";
exit(0);
}
void err() {
cout << -1 << "\n";
exit(0);
}
template <class T>
void vout(vector<T> &v, bool tate = 0) {
if(v.size() > 0) {
for(auto it = v.begin(); it < v.end(); it++) {
cout << *it;
if(it != v.end() - 1) {
if(tate)
cout << endl;
else
cout << " ";
}
}
}
cout << endl;
}
template <class T>
void add(vector<T> &v, T val) { //ベクトルの各要素に加算
for(auto &a : v) a += val;
return;
}
// vectorの中身を数える map<要素,個数>を返す
template <class T>
map<T, long long> cntv(vector<T> v) {
map<T, long long> m;
for(auto &g : v) {
if(m.count(g))
m[g]++;
else
m[g] = 1;
}
return m;
}
//配列圧縮
//{1,36,1,3,8,-2,-92}を
//{2, 5,2,3,4, 1, 0}にする
template <class T>
vector<int> press(vector<T> &v) {
int n = v.size();
vector<int> w(n);
map<T, int> m;
for(T &p : v) m[p] = 0;
int i = 0;
for(auto &p : m) {
p.second = i;
i++;
}
for(int i = 0; i < n; i++) w.at(i) = m[v.at(i)];
return w;
}
// 切り上げ除算
template <class T>
T dup(T a, T b) {
assert(b != 0);
T x = abs(a);
T y = abs(b);
T z = (x + y - 1) / y;
if((a < 0 && b > 0) || (a > 0 && b < 0))
return -z;
else if(a == 0)
return 0;
else
return z;
}
long long POW(long long a, long long n) {
long long res = 1;
while(n > 0) {
if(n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
template <class T>
T greatest_lower_multiple(T x, T d) {
if(d == 0) return 0;
if(d < 0) d *= -1;
T y = x % d;
if(y < 0) y += d;
return x - y;
}
template <class T>
T least_upper_multiple(T x, T d) {
return -greatest_lower_multiple(-x, d);
}
long long modpow(long long a, long long n, long long mod) { // a^n mod
assert(n >= 0);
if(mod == 1) return 0LL;
long long res = 1;
while(n > 0) {
if(n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
// a * x % mod == __gcd(a,mod)なるxを返す
// a が modの倍数でないことが条件
long long modinv(long long a, long long mod) {
long long b = mod, u = 1, v = 0;
while(b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if(u < 0) u += mod;
return u;
}
vvll comb(100, vll(100, -1));
long long com(long long n, long long k) { //普通の二項計数(overflowに注意)
assert(n < 100 && k < 100);
if(n < k || k < 0 || n < 0) return 0;
if(comb[n][k] != -1) return comb[n][k];
ll res;
if(n - k < k)
res = com(n, n - k);
else if(k == 0)
res = 1;
else
res = com(n - 1, k - 1) + com(n - 1, k);
comb[n][k] = res;
return res;
}
// nCk modを求める
const int MAX = 5100000;
// この値は求める二項計数の値に応じて変える
// MAX=3*10^7のとき1900msほど、ほぼ比例
// MAX=5*10^6程度ならそれほど気にしなくてよい(300ms程)
long long fac[MAX], finv[MAX], inv[MAX];
void cominit() {
// テーブルを作る前処理
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for(int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = mod - inv[mod % i] * (mod / i) % mod;
finv[i] = finv[i - 1] * inv[i] % mod;
}
}
long long commod(long long n, long long k) { // 二項係数
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % mod) % mod;
}
long long pmod(long long n, long long k) { // 順列
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac[n] * finv[n - k] % mod;
}
// n個の区別しないボールを区別するk個の箱に入れる方法の総数
long long hmod(long long n, long long k) { // 重複組み合わせ
return commod(n + k - 1, n);
}
#pragma endregion
#pragma region input
#define VEC(type, name, size) \
vector<type> name(size); \
INPUT(name)
#define VVEC(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
INPUT(name)
#define INT(...) \
int __VA_ARGS__; \
INPUT(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
INPUT(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
INPUT(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
INPUT(__VA_ARGS__)
#define DOUBLE(...) \
double __VA_ARGS__; \
INPUT(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
INPUT(__VA_ARGS__)
template <class T>
void scan(T &a) {
cin >> a;
}
template <class T>
void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T, class L>
void scan(pair<T, L> &p) {
scan(p.first);
scan(p.second);
}
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &... tail) {
scan(head);
INPUT(tail...);
}
template <class T>
inline void print(T x) {
cout << x << '\n';
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
#pragma endregion
#pragma region debug
#pragma region output
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
if(i) os << " ";
os << v[i];
}
return os;
}
#pragma endregion
#pragma region view
template <typename T>
void view(const T e) {
std::cerr << e;
}
template <typename T, typename U>
void view(const std::pair<T, U> &p) {
std::cerr << "(";
view(p.first);
cerr << ", ";
view(p.second);
cerr << ")";
}
template <typename T>
void view(const std::set<T> &s) {
if(s.empty()) {
cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<T> &v) {
if(v.empty()) {
cerr << "{ }";
return;
}
std::cerr << "{ ";
for(const auto &e : v) {
view(e);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<std::vector<T>> &vv) {
std::cerr << "{\n";
for(const auto &v : vv) {
std::cerr << "\t";
view(v);
std::cerr << "\n";
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::vector<std::pair<T, U>> &v) {
std::cerr << "{\n";
for(const auto &c : v) {
std::cerr << "\t(";
view(c.first);
cerr << ", ";
view(c.second);
cerr << ")\n";
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::map<T, U> &m) {
std::cerr << "{\n";
for(const auto &t : m) {
std::cerr << "\t[";
view(t.first);
cerr << "] : ";
view(t.second);
cerr << "\n";
}
std::cerr << "}";
}
#pragma endregion
// when debugging : g++ foo.cpp -DLOCAL
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
view(H);
cerr << ", ";
debug_out(T...);
}
#define debug(...) \
do { \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
debug_out(__VA_ARGS__); \
cerr << "\b\b]\n"; \
} while(0)
#define dump(x) \
do { \
cerr << __LINE__ << " " << #x << " : "; \
view(x); \
cerr << "\n"; \
} while(0)
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
#pragma endregion
#pragma region graph_structure
template <class T = long long>
struct edge {
T len;
int from;
int to;
bool operator<(const edge a) const {
if(len != a.len) return len < a.len;
if(from != a.from) return from < a.from;
return to < a.to;
}
bool operator>(const edge a) const {
if(len != a.len) return len > a.len;
if(from != a.from) return from > a.from;
return to > a.to;
}
};
template <class T = long long>
struct graph { // 0-indexed
T const INF = numeric_limits<T>::max() / 3;
vector<vector<edge<T>>> edges;
int ver;
// constructor
graph() = default;
graph(int vertex) : ver(vertex), edges(vertex) {}
//辺の追加 (0-indexed)
void update(int from, int to, T len = 1, bool direction = 1) { // checked
edge<T> e;
e.len = len;
e.from = from;
e.to = to;
edges[from].push_back(e);
if(!direction) {
swap(e.to, e.from);
edges[to].push_back(e);
}
}
//入力受取 (1-indexed)
void input(int edge_num, bool direction = false, bool weight = false, int index = 1) { // checked
for(int i = 0; i < edge_num; i++) {
int a;
int b;
cin >> a >> b;
a -= index;
b -= index;
T c;
if(weight)
cin >> c;
else
c = 1;
update(a, b, c, direction);
}
}
// 辺の長さを全て1とみたときの単一始点最短経路 (無理なときはINF)
vector<T> bfs(int start) { // checked
// https://atcoder.jp/contests/abc007/submissions/me
vector<T> ret(ver, INF);
queue<int> q;
q.push(start);
ret[start] = 0;
while(!q.empty()) {
int now = q.front();
q.pop();
for(auto &e : edges[now]) {
if(ret[e.to] != INF) continue;
q.push(e.to);
ret[e.to] = ret[now] + 1;
}
}
return ret;
}
//長さが負のpathがないときの単一始点最短経路<vll> O((ver)log(ver)+(edge))
vector<T> dijkstra(int start) { // checked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_1_A/judge/4817136/C++14
vector<T> ret(ver, (T)INF); //{dist,place}
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> p; //{dist,place}
p.push({0, start});
ret[start] = 0;
while(!p.empty()) {
T dist = p.top().first;
int place = p.top().second;
p.pop();
if(ret[place] < dist) continue;
for(auto &next : edges[place]) {
int nextplace = next.to;
T dis = next.len;
if(ret[nextplace] > dist + dis) {
ret[nextplace] = dist + dis;
p.push({ret[nextplace], nextplace});
}
}
}
return ret;
}
//単一始点最短経路 O((ver)*(edge))
//辿り着けないとき ret[i] = INF;
//ある頂点までのコストが無限に小さくなり得るとき→ ret[i] = -INF;
vector<T> BellmanFord(int start) { // checked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_1_B/judge/4817139/C++14
vector<T> ret(ver, INF);
ret[start] = 0;
for(int loop = 0; loop < ver - 1; loop++) {
for(int v = 0; v < ver; v++) {
if(ret[v] == INF) continue;
for(auto &e : edges[v]) {
ret[e.to] = min(ret[e.to], ret[v] + e.len);
}
}
}
//無限降下点の検索
queue<int> q;
vector<bool> chk(ver, 0);
for(int v = 0; v < ver; v++) {
if(ret[v] == INF) continue;
for(auto &e : edges[v]) {
if(ret[e.to] > ret[v] + e.len) {
ret[e.to] = ret[v] + e.len;
if(!chk[e.to]) {
q.push(e.to);
chk[e.to] = 1;
}
}
}
}
while(!q.empty()) {
int now = q.front();
q.pop();
for(auto &e : edges[now]) {
if(!chk[e.to]) {
chk[e.to] = 1;
q.push(e.to);
}
}
}
for(int i = 0; i < ver; i++)
if(chk[i]) ret[i] = -INF;
return ret;
}
//閉路に含まれない頂点列挙
//要素数がver未満なら閉路が存在、そうでなければ閉路は存在しない
vector<int> topo_sort() { // checked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_4_B/judge/4817106/C++14
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_4_A/judge/4817110/C++14
vector<int> num_input(ver);
// 入次数
for(int i = 0; i < ver; i++) {
for(auto e : edges[i]) {
num_input[e.to]++;
}
}
// 入次数が0のノードをqueueで管理する
queue<int> que;
for(int i = 0; i < ver; i++) {
if(num_input[i] == 0) {
que.push(i);
}
}
vector<int> ans;
while(!que.empty()) {
auto node = que.front();
que.pop();
ans.push_back(node);
// 頂点の削除
for(auto e : edges[node]) {
num_input[e.to]--;
// 行き先の入次数が0になったらqueueに追加
if(num_input[e.to] == 0) {
que.push(e.to);
}
}
}
return ans;
}
//{{端点、端点},直径の大きさ}
pair<pair<int, int>, T> DiameterOfTree(bool weigh = true) { // chkecked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_5_A/judge/4817099/C++14
vector<T> vec;
vec = weigh ? dijkstra(0) : bfs(0);
int v1 = -1;
T dia = -1;
for(int i = 0; i < ver; i++)
if((dia < vec[i])) {
dia = vec[i];
v1 = i;
}
vec = weigh ? dijkstra(v1) : bfs(v1);
dia = -1;
int v2 = -1;
for(int i = 0; i < ver; i++)
if((dia < vec[i])) {
v2 = i;
dia = vec[i];
}
pair<pair<int, int>, T> ans = {{v1, v2}, dia};
return ans;
}
//無向木構造を根から葉に伸びる有向木構造に書き換える
graph<T> RootToLeaf(int root) { // 0-indexed
graph<T> ret(ver);
vector<bool> chk(ver, 0);
chk[root] = 1;
function<void(int)> dfs = [&](int now) {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
ret.update(now, e.to, e.len);
dfs(e.to);
}
};
dfs(root);
return ret;
}
//無向木構造を葉から根に伸びる有向木構造に書き換える
graph<T> LeafToRoot(int root) { // 0-indexed
graph<T> ret(ver);
vector<bool> chk(ver, 0);
chk[root] = 1;
function<void(int)> dfs = [&](int now) {
for(auto &e : edges[now]) {
if(chk[e.to] == 1) continue;
chk[e.to] = 1;
ret.update(e.to, now, e.len);
dfs(e.to);
}
};
dfs(root);
ret.update(root, root, 0);
return ret;
}
// LeafToRootのvector版.par[i]=iの親の頂点
vector<int> par(int root) { // 0-indexed
vector<int> ret(ver, -1);
ret[root] = root; // rootの親はroot
function<void(int)> dfs = [&](int now) {
for(auto &e : edges[now]) {
if(ret[e.to] != -1) continue;
ret[e.to] = now;
dfs(e.to);
}
};
dfs(root);
return ret;
}
vector<edge<T>> ParentAndDistance(int root) { // 0-indexed
vector<edge<T>> ret(ver);
for(int i = 0; i < ver; i++) ret[i].to = -1;
ret[root].to = root; // rootの親はroot
ret[root].len = 0; // rootの親との距離は0
function<void(int)> dfs = [&](int now) {
for(auto &e : edges[now]) {
if(ret[e.to].to != -1) continue;
ret[e.to].to = now;
ret[e.to].len = e.len;
dfs(e.to);
}
};
dfs(root);
return ret;
}
//隣接sheet.主にwarshall用
vector<vector<T>> GraphArray(void) { // chkecked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_1_C/judge/4817090/C++14
vector<vector<T>> ret(ver, vector<T>(ver, INF));
for(int from = 0; from < ver; from++) {
for(auto &e : edges[from]) {
ret[from][e.to] = e.len;
}
ret[from][from] = 0;
}
return ret;
}
graph<T> Prim(bool direction = 0, int start = 0) { // checked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_2_A/judge/4817129/C++14
graph<T> ret(ver);
priority_queue<edge<T>, vector<edge<T>>, greater<edge<T>>> p;
for(auto &e : edges[start]) {
p.push(e);
}
vector<bool> chk(ver, 0);
chk[start] = 1;
while(!p.empty()) {
auto ed = p.top();
p.pop();
if(chk[ed.to]) continue;
chk[ed.to] = 1;
ret.update(ed.from, ed.to, ed.len, direction);
for(auto &e : edges[ed.to]) {
p.push(e);
}
}
return ret;
}
//各頂点を根としたときの木の高さ
vector<T> height(int start = 0) { // checked
// https://onlinejudge.u-aizu.ac.jp/status/users/Kite_kuma/submissions/1/GRL_5_B/judge/4817082/C++14
vector<T> fir(ver, -1), sec(ver, -1);
function<T(int, int)> dfs = [&](int now, int par) {
T f = 0, s = 0; // startを根としたときのnowからの深さ1番目、2番目
for(auto &e : edges[now]) {
if(e.to == par) continue;
s = max(s, dfs(e.to, now) + e.len);
if(f < s) swap(f, s);
}
sec[now] = s;
return fir[now] = f;
};
dfs(start, -1);
function<void(int, int, T, T, T)> sol = [&](int now, int par, T parf, T pars, T parlen) {
if(fir[now] + parlen == parf) parf = pars;
sec[now] = max(sec[now], parf + parlen);
if(fir[now] < sec[now]) swap(fir[now], sec[now]);
for(auto &e : edges[now]) {
if(e.to == par) continue;
sol(e.to, now, fir[now], sec[now], e.len);
}
return;
};
sol(start, -1, -1, -1, -1);
return fir;
}
//全方位木DP
//マージ関数、上に送るための関数、単位元、はじめの根
// 関数はstd::functionで渡す
template <class U>
vector<U> ReRootingDP(U &unit, function<U(U, U)> &merge, function<U(int, U, T)> &send, int root = 0) {
auto tr = RootToLeaf(root);
vector<vector<U>> v(ver);
vector<U> ret(ver); //求める答
function<U(int)> treeDP = [&](int now) {
U res = unit;
vector<U> vec;
for(auto &e : tr.edges[now]) {
U u = send(e.to, treeDP(e.to), e.len);
v[now].push_back(u);
res = merge(res, u);
}
return res;
};
treeDP(root);
function<void(int, U, int, T)> rerooting = [&](int now, U ans_par, int par, T len) {
if(now != root) ans_par = send(par, ans_par, len);
int sz = v[now].size();
vector<U> data_front(sz + 1), data_back(sz + 1);
data_front[0] = data_back[sz] = unit;
for(int i = 0; i < sz; i++) {
data_front[i + 1] = merge(data_front[i], v[now][i]);
data_back[sz - i - 1] = merge(v[now][sz - i - 1], data_back[sz - i]);
}
for(int i = 0; i < sz; i++) {
auto nxtans = merge(ans_par, merge(data_front[i], data_back[i + 1]));
rerooting(tr.edges[now][i].to, nxtans, now, tr.edges[now][i].len);
}
ret[now] = merge(ans_par, data_front[sz]);
return;
};
rerooting(root, unit, root, 0);
return ret;
}
// HL分解
};
#pragma endregion
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
srand((unsigned)time(NULL));
INT(n, m);
graph<> gra(n);
map<pair<int, int>, pair<ll, ll>> ma;
map<pair<int, int>, ll> ed;
rep(i, m) {
INT(u, v);
LL(c, d);
u--, v--;
gra.update(u, v, c, false);
ed[make_pair(u, v)] = c;
ed[make_pair(v, u)] = c;
ma[make_pair(u, v)] = {c, d};
ma[make_pair(v, u)] = {c, d};
}
auto res = gra.dijkstra(0);
int now = n - 1;
dump(ed);
dump(ma);
while(now) {
foa(e, gra.edges[now]) {
if(res[e.to] + e.len == res[now]) {
ed[make_pair(now, e.to)] = ed[make_pair(e.to, now)] = ma[make_pair(e.to, now)].second;
now = e.to;
break;
}
}
}
dump(ed);
dump(ma);
graph<> fra(n);
foa(t, ed) { fra.update(t.first.first, t.first.second, ed[make_pair(t.first.first, t.first.second)]); }
auto ans = fra.dijkstra(0);
dump(res);
dump(ans);
drop(res[n - 1] + ans[n - 1]);
return 0;
}
Kite_kuma