結果
| 問題 |
No.1275 綺麗な式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-10-31 00:03:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 4,217 bytes |
| コンパイル時間 | 2,396 ms |
| コンパイル使用メモリ | 192,960 KB |
| 最終ジャッジ日時 | 2025-01-15 18:11:49 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 60 |
コンパイルメッセージ
001.cpp: In function ‘int main()’:
001.cpp:43:25: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 4 has type ‘i64*’ {aka ‘long int*’} [-Wformat=]
001.cpp:43:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
ソースコード
#line 1 "001.cpp"
#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::cerr;
using std::endl;
using std::cin;
template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
using u32 = std::uint_fast32_t;
using u64 = std::uint_fast64_t;
using i64 = std::int_fast64_t;
inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
u64 a;
static constexpr u64 mod = Modulus;
constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
constexpr modint operator-() const noexcept { return modint(Modulus - a); }
constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
constexpr modint& operator+=(const modint& rhs) noexcept {
a += rhs.a;
if (a >= Modulus) a -= Modulus;
return *this;
}
constexpr modint& operator-=(const modint& rhs) noexcept {
if (a < rhs.a) a += Modulus;
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint& rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) (*this) *= rhs;
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint& operator^=(u64 k) noexcept {
auto b = modint(1);
while(k) {
if(k & 1) b = b * (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = b;
}
constexpr modint& operator=(const modint& rhs) noexcept {
a = rhs.a;
return (*this);
}
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
explicit operator bool() const { return a; }
explicit operator u32() const { return a; }
const modint inverse() const {
return modint(1) / *this;
}
const modint pow(i64 k) const {
return modint(*this) ^ k;
}
friend std::ostream& operator<<(std::ostream& os, const modint& p) {
return os << p.a;
}
friend std::istream& operator>>(std::istream& is, modint& p) {
u64 t;
is >> t;
p = modint(t);
return is;
}
};
}
#line 18 "001.cpp"
using mint = cplib::modint<(int)(1e9 + 7)>;
struct kiritan {
mint a, b, c;
kiritan(mint a = 1, mint b = 0, mint c = 2): a(a), b(b), c(c) {}
kiritan operator+(const kiritan& r) const {
return kiritan(a + r.a, b + r.b, c);
}
kiritan operator*(const kiritan& r) const {
return kiritan(a * r.a + b * r.b * c, a * r.b + b * r.a, c);
}
};
kiritan power(kiritan a, i64 n) {
kiritan ret(1, 0, a.c);
while(n) {
if(n & 1) ret = ret * a;
a = a * a;
n >>= 1;
}
return ret;
};
int main() {
int a, b; i64 n; scanf("%d%d%lld", &a, &b, &n);
printf("%lu\n", (power(kiritan(a, 1, b), n) + power(kiritan(a, -1, b), n)).a.value());
return 0;
}