結果

問題 No.1270 Range Arrange Query
ユーザー tran0826
提出日時 2020-10-31 17:37:49
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,441 ms / 7,000 ms
コード長 12,764 bytes
コンパイル時間 2,659 ms
コンパイル使用メモリ 170,488 KB
最終ジャッジ日時 2025-01-15 18:36:26
ジャッジサーバーID
(参考情報)
judge1 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<vector>
#include<set>
#include<queue>
#include<map>
#include<algorithm>
#include<cstring>
#include<string>
#include<cassert>
#include<cmath>
#include<climits>
#include<iomanip>
#include<stack>
#include<unordered_map>
#include<bitset>
#include<limits>
#include<complex>
#include<array>
#include<numeric>
#include<functional>
#include<random>
using namespace std;
#define ll long long
#define ull unsigned long long
#define rep(i,m,n) for(ll (i)=(ll)(m);i<(ll)(n);i++)
#define REP(i,n) rep(i,0,n)
#define all(hoge) (hoge).begin(),(hoge).end()
typedef pair<ll, ll> P;
constexpr long double m_pi = 3.1415926535897932L;
constexpr ll MOD = 1000000007;
constexpr ll INF = 1LL << 61;
constexpr long double EPS = 1e-10;
template<typename T> using vector2 = vector<vector<T>>;
template<typename T> using vector3 = vector<vector2<T>>;
typedef vector<ll> Array;
typedef vector<Array> Matrix;
string operator*(const string& s, int k) {
if (k == 0) return "";
string p = (s + s) * (k / 2);
if (k % 2 == 1) p += s;
return p;
}
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; }return false; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; }return false; }
struct Edge {//
int to, rev; ll cap;
Edge(int _to, ll _cap, int _rev) {
to = _to; cap = _cap; rev = _rev;
}
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph& G, int from, int to, ll cap, bool revFlag, ll revCap) {// Ford-fulkerson
G[from].push_back(Edge(to, cap, (ll)G[to].size() + (from == to)));
if (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));//0
}
ll max_flow_dfs(Graph& G, ll v, ll t, ll f, vector<bool>& used)
{
if (v == t)
return f;
used[v] = true;
for (int i = 0; i < G[v].size(); ++i) {
Edge& e = G[v][i];
if (!used[e.to] && e.cap > 0) {
ll d = max_flow_dfs(G, e.to, t, min(f, e.cap), used);
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
// -
ll max_flow(Graph& G, ll s, ll t)//O(V(V+E))
{
ll flow = 0;
for (;;) {
vector<bool> used(G.size());
REP(i, used.size())used[i] = false;
ll f = max_flow_dfs(G, s, t, INF, used);
if (f == 0) {
return flow;
}
flow += f;
}
}
void BellmanFord(Graph& G, ll s, Array& d, Array& negative) {//O(|E||V|)
d.resize(G.size());
negative.resize(G.size());
REP(i, d.size())d[i] = INF;
REP(i, d.size())negative[i] = false;
d[s] = 0;
REP(k, G.size() - 1) {
REP(i, G.size()) {
REP(j, G[i].size()) {
if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {
d[G[i][j].to] = d[i] + G[i][j].cap;
}
}
}
}
REP(k, G.size() - 1) {
REP(i, G.size()) {
REP(j, G[i].size()) {
if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {
d[G[i][j].to] = d[i] + G[i][j].cap;
negative[G[i][j].to] = true;
}
if (negative[i] == true)negative[G[i][j].to] = true;
}
}
}
}
void Dijkstra(Graph& G, ll s, Array& d) {//O(|E|log|V|)
d.resize(G.size());
REP(i, d.size())d[i] = INF;
d[s] = 0;
priority_queue<P, vector<P>, greater<P>> q;
q.push(make_pair(0, s));
while (!q.empty()) {
P a = q.top();
q.pop();
if (d[a.second] < a.first)continue;
REP(i, G[a.second].size()) {
Edge e = G[a.second][i];
if (d[e.to] > d[a.second] + e.cap) {
d[e.to] = d[a.second] + e.cap;
q.push(make_pair(d[e.to], e.to));
}
}
}
}
void WarshallFloyd(Graph& G, Matrix& d) {//O(V^3)
d.resize(G.size());
REP(i, d.size())d[i].resize(G.size());
REP(i, d.size()) {
REP(j, d[i].size()) {
d[i][j] = ((i != j) ? INF : 0);
}
}
REP(i, G.size()) {
REP(j, G[i].size()) {
chmin(d[i][G[i][j].to], G[i][j].cap);
}
}
REP(i, G.size()) {
REP(j, G.size()) {
REP(k, G.size()) {
if (d[j][i] != INF && d[i][k] != INF)chmin(d[j][k], d[j][i] + d[i][k]);
}
}
}
}
bool tsort(Graph& graph, vector<int>& order) {//O(E+V)
int n = graph.size(), k = 0;
vector<int> in(n);
for (auto& es : graph)
for (auto& e : es)in[e.to]++;
priority_queue<int, vector<int>, greater<int>> que;
REP(i, n)
if (in[i] == 0)que.push(i);
while (que.size()) {
int v = que.top();
que.pop();
order.push_back(v);
for (auto& e : graph[v])
if (--in[e.to] == 0)que.push(e.to);
}
if (order.size() != n)return false;
else return true;
}
class Lca {
public:
const int n = 0;
const int log2_n = 0;
std::vector<std::vector<int>> parent;
std::vector<int> depth;
Lca() {}
Lca(const Graph& g, int root)
: n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) {
dfs(g, root, -1, 0);
for (int k = 0; k + 1 < log2_n; k++) {
for (int v = 0; v < (int)g.size(); v++) {
if (parent[k][v] < 0)
parent[k + 1][v] = -1;
else
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
void dfs(const Graph& g, int v, int p, int d) {
parent[0][v] = p;
depth[v] = d;
for (auto& e : g[v]) {
if (e.to != p) dfs(g, e.to, v, d + 1);
}
}
int get(int u, int v) {
if (depth[u] > depth[v]) std::swap(u, v);
for (int k = 0; k < log2_n; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[k][v];
}
}
if (u == v) return u;
for (int k = log2_n - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
};
class UnionFind {
vector<int> data;
int n;
public:
UnionFind(int size) : data(size, -1), n(size) { }
bool merge(int x, int y) {//xy
x = root(x); y = root(y);
if (x != y) {
if (data[y] < data[x]) swap(x, y);
data[x] += data[y]; data[y] = x;
}
n -= (x != y);
return x != y;
}
bool same(int x, int y) {//xy
return root(x) == root(y);
}
int root(int x) {//x
return data[x] < 0 ? x : data[x] = root(data[x]);
}
int size(int x) {//x
return -data[root(x)];
}
int num() {//
return n;
}
};
template<typename T, typename F>
class SegmentTree {
private:
T identity;
F merge;
ll n;
vector<T> dat;
public:
SegmentTree(F f, T id, vector<T> v) :merge(f), identity(id) {
int _n = v.size();
n = 1;
while (n < _n)n *= 2;
dat.resize(2 * n - 1, identity);
REP(i, _n)dat[n + i - 1] = v[i];
for (int i = n - 2; i >= 0; i--)dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);
}
SegmentTree(F f, T id, int _n) :merge(f), identity(id) {
n = 1;
while (n < _n)n *= 2;
dat.resize(2 * n - 1, identity);
}
void set_val(int i, T x) {
i += n - 1;
dat[i] = x;
while (i > 0) {
i = (i - 1) / 2;
dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);
}
}
T query(int l, int r) {
T left = identity, right = identity;
l += n - 1; r += n - 1;
while (l < r) {
if ((l & 1) == 0)left = merge(left, dat[l]);
if ((r & 1) == 0)right = merge(dat[r - 1], right);
l = l / 2;
r = (r - 1) / 2;
}
return merge(left, right);
}
};
template< typename T >
class FenwickTree {
vector< T > data;
int n;
int p;
public:
FenwickTree(int n) :n(n) {
data.resize(n + 1LL, 0);
p = 1;
while (p < data.size())p *= 2;
}
T sum(int k) {
T ret = 0;
for (; k > 0; k -= k & -k) ret += data[k];
return (ret);
}
T sum(int a, int b) { return sum(b) - sum(a); }//[a,b)
void add(int k, T x) {
for (++k; k <= n; k += k & -k) data[k] += x;
}
int lower_bound(ll w) {
if (w <= 0)return -1;
int x = 0;
for (int k = p / 2; k > 0; k /= 2) {
if (x + k <= n && data[x + k] < w)w -= data[x + k], x += k;
}
return x;
}
};
// //
void divisor(ll n, vector<ll>& ret) {
for (ll i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(ret.begin(), ret.end());
}
void prime_factorization(ll n, vector<P>& ret) {
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back({ i,0 });
while (n % i == 0) {
n /= i;
ret[ret.size() - 1].second++;
}
}
}
if (n != 1)ret.push_back({ n,1 });
}
inline ll mod_pow(ll x, ll n, ll mod) {
ll res = 1;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
inline ll mod_inv(ll x, ll mod) {
return mod_pow(x, mod - 2, mod);
}
class Combination {
public:
Array fact;
Array fact_inv;
ll mod;
//if n >= mod use lucas
ll nCr(ll n, ll r) {
if (n < r)return 0;
if (n < mod)return ((fact[n] * fact_inv[r] % mod) * fact_inv[n - r]) % mod;
ll ret = 1;
while (n || r) {
ll _n = n % mod, _r = r % mod;
n /= mod; r /= mod;
(ret *= nCr(_n, _r)) %= mod;
}
return ret;
}
ll nPr(ll n, ll r) {
return (fact[n] * fact_inv[n - r]) % mod;
}
ll nHr(ll n, ll r) {
return nCr(r + n - 1, r);
}
Combination(ll _n, ll _mod) {
mod = _mod;
ll n = min(_n + 1, mod);
fact.resize(n);
fact[0] = 1;
REP(i, n - 1) {
fact[i + 1] = (fact[i] * (i + 1LL)) % mod;
}
fact_inv.resize(n);
fact_inv[n - 1] = mod_inv(fact[n - 1], mod);
for (int i = n - 1; i > 0; i--) {
fact_inv[i - 1] = fact_inv[i] * i % mod;
}
}
};
ll popcount(ll x) {
x = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555);
x = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333);
x = (x & 0x0F0F0F0F0F0F0F0F) + (x >> 4 & 0x0F0F0F0F0F0F0F0F);
x = (x & 0x00FF00FF00FF00FF) + (x >> 8 & 0x00FF00FF00FF00FF);
x = (x & 0x0000FFFF0000FFFF) + (x >> 16 & 0x0000FFFF0000FFFF);
x = (x & 0x00000000FFFFFFFF) + (x >> 32 & 0x00000000FFFFFFFF);
return x;
}
template<typename T, typename E, typename F, typename G, typename H, typename P>
class LazySegmentTree {
private:
const T identity_t;
const E identity_e;
F f_tt;
G f_te;
H f_ee;
P f_ep;//
vector<T> dat;
vector<E> lazy;
int n;
void eval(int k, int len) {
if (lazy[k] == identity_e)return;
if (k < n - 1) {
lazy[2 * k + 1] = f_ee(lazy[2 * k + 1], lazy[k]);
lazy[2 * k + 2] = f_ee(lazy[2 * k + 2], lazy[k]);
}
dat[k] = f_te(dat[k], f_ep(lazy[k], len));
lazy[k] = identity_e;
}
void update(int a, int b, E x, int k, int l, int r) {
eval(k, r - l);
if (a <= l && r <= b) {
lazy[k] = f_ee(lazy[k], x);
eval(k, r - l);
}
else if (a < r && l < b) {
update(a, b, x, k * 2 + 1, l, (l + r) / 2);
update(a, b, x, k * 2 + 2, (l + r) / 2, r);
dat[k] = f_tt(dat[2 * k + 1], dat[2 * k + 2]);
}
}
T query(int a, int b, int k, int l, int r) {
eval(k, r - l);
if (r <= a || b <= l)return identity_t;
else if (a <= l && r <= b)return dat[k];
else {
T vl = query(a, b, 2 * k + 1, l, (l + r) / 2);
T vr = query(a, b, 2 * k + 2, (l + r) / 2, r);
return f_tt(vl, vr);
}
}
public:
LazySegmentTree(vector<T> v, T id_t, E id_e, F f, G g, H h, P p) :
identity_t(id_t), identity_e(id_e), f_tt(f), f_te(g), f_ee(h), f_ep(p) {
n = 1;
while (n < v.size())n *= 2;
dat.resize(2 * n - 1, identity_t);
lazy.resize(2 * n - 1, identity_e);
REP(i, v.size())dat[n + i - 1] = v[i];
for (int i = n - 2; i >= 0; i--)dat[i] = f_tt(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void update(int a, int b, E x) { update(a, b, x, 0, 0, n); }
T query(int a, int b) { return query(a, b, 0, 0, n); }
};
constexpr ll mod = 998244353;
int main() {
ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
ll n, q;
cin >> n >> q;
Array a(n);
REP(i, n)cin >> a[i], a[i]--;
Array l(n + 1, 0), r(n + 1, 0);
FenwickTree<ll> ft1(n), ft2(n);
REP(i, n) {
l[i + 1] = l[i] + ft1.sum(a[i] + 1, n);
ft1.add(a[i], 1);
}
auto f = [](ll a, ll b) {return min(a, b); };
auto g = [](ll a, ll b) {return a + b; };
auto h = [](ll a, ll b) {return a + b; };
auto p = [](ll a, int b) {return a; };
LazySegmentTree seg(Array(n, 0), INF, 0LL, f, g, h, p);
r[0] = l[n];
REP(i, n) {
ft1.add(a[i], - 1);
r[i + 1] = r[i] - ft1.sum(0, a[i]);
}
vector2<tuple<ll,ll,ll>> query(500);
REP(i, q) {
ll l, r;
cin >> l >> r; l--;
query[l / 500].push_back({ r,l,i });
}
REP(i, 500)if (query[i].size())sort(all(query[i]));
ll tmp = 0;
ll ln = 0, rn = n;
auto ch = [&](ll i, ll v, ll lr) {
if (lr == 0)tmp += v * ft2.sum(0, a[i]), ft1.add(a[i], v), seg.update(0, a[i], v);
else tmp += v * ft1.sum(a[i] + 1, n), ft2.add(a[i], v), seg.update(a[i] + 1, n, v);
};
Array ans(q);
for (auto block : query) {
for (auto [y, x, i] : block) {
while (ln > x)ch(--ln, -1, 0);
while (ln < x)ch(ln++, 1, 0);
while (rn < y)ch(rn++, -1, 1);
while (rn > y)ch(--rn, 1, 1);
ans[i] = tmp + seg.query(0,n) *(y-x) + l[x] + r[y];
}
}
REP(i, q)cout << ans[i] << "\n";
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0