結果

問題 No.1067 #いろいろな色 / Red and Blue and more various colors (Middle)
ユーザー stoqstoq
提出日時 2020-11-04 05:43:12
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,292 bytes
コンパイル時間 2,462 ms
コンパイル使用メモリ 217,684 KB
実行使用メモリ 284,444 KB
最終ジャッジ日時 2024-07-22 09:40:01
合計ジャッジ時間 9,843 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,884 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 TLE -
testcase_12 AC 1,086 ms
141,952 KB
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 2

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

struct io_init
{
  io_init()
  {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
  if (a > b)
  {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
  if (a < b)
  {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b)
{
  return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
  fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
  os << p.first << " " << p.second;
  return os;
}
#pragma endregion

ll mod_pow(ll a, ll n, ll m)
{
  ll res = 1, p = a % m;
  while (n)
  {
    if (n & 1)
      res = res * p % m;
    p = p * p % m;
    n >>= 1;
  }
  return res;
}

template <ll mod = 998244353, ll root = 3> //特殊な素数と原始根 998244353のとき3
class NTT
{
private:
  template <typename T>
  inline void bit_reverse(vector<T> &a)
  {
    int n = a.size();
    int i = 0;
    for (int j = 1; j < n - 1; ++j)
    {
      for (int k = n >> 1; k > (i ^= k); k >>= 1)
        ;
      if (j < i)
        swap(a[i], a[j]);
    }
  }
  void _ntt(vector<long long> &a, int sign)
  {
    const int n = a.size();
    assert((n ^ (n & -n)) == 0); //n = 2^k

    long long tmp = (mod - 1) * mod_pow((ll)n, mod - 2, mod) % mod; // -1/n
    long long h = mod_pow(root, tmp, mod);                          // ^n√g
    if (sign == -1)
      h = mod_pow(h, mod - 2, mod);

    bit_reverse(a);

    for (ll m = 1; m < n; m <<= 1)
    {
      const ll m2 = 2 * m;
      long long _base = mod_pow((ll)h, (ll)(n / m2), mod);
      long long _w = 1;
      for (int x = 0; x < m; ++x)
      {
        for (ll s = x; s < n; s += m2)
        {
          long long u = a[s];
          long long d = (a[s + m] * _w) % mod;
          a[s] = (u + d) % mod;
          a[s + m] = (u - d + mod) % mod;
        }
        _w = (_w * _base) % mod;
      }
    }
  }

  void ntt(vector<long long> &input) { _ntt(input, 1); }

  void intt(vector<long long> &input)
  {
    _ntt(input, -1);
    const long long n_inv = mod_pow((ll)input.size(), mod - 2, mod);
    for (auto &x : input)
      x = (x * n_inv) % mod;
  }

public:
  // 畳み込み演算を行う
  vector<long long> convolution(const vector<long long> &a, const vector<long long> &b)
  {
    int result_size = a.size() + b.size() - 1;
    int n = 1;
    while (n < result_size)
      n <<= 1;

    vector<long long> _a = a, _b = b;
    _a.resize(n, 0);
    _b.resize(n, 0);

    ntt(_a);
    ntt(_b);
    for (int i = 0; i < n; ++i)
      _a[i] = (_a[i] * _b[i]) % mod;
    intt(_a);

    _a.resize(result_size);
    return _a;
  }
};

void solve()
{
  NTT<> ntt;
  int n, q;
  cin >> n >> q;
  vector<ll> a(n);
  rep(i, n) cin >> a[i];
  sort(all(a));
  vector<ll> L(n + 1);
  vector<vector<ll>> R(n + 1);
  L[0] = 1;
  R[n].push_back(1);
  rep(i, n)
  {
    L[i + 1] = L[i] * a[i] % MOD;
  }
  for (int i = n; i > 0; i--)
  {
    vector<ll> f = {a[i - 1] - 1, 1};
    R[i - 1] = ntt.convolution(R[i], f);
  }
  vector<vector<ll>> F(n + 1);
  rep(i, n + 1)
  {
    F[i] = R[i];
    for (auto &&c : F[i])
      c = c * L[i] % MOD;
  }
  rep(qi, q)
  {
    int l, r, p;
    cin >> l >> r >> p;
    ll ans = 0;
    REP(i, l, r + 1)
    {
      int idx = lower_bound(all(a), i) - a.begin();
      if (p < F[idx].size())
        ans ^= F[idx][p];
    }
    ans %= MOD;
    cout << ans << "\n";
  }
}

int main()
{
  solve();
}
0