結果
| 問題 |
No.1084 積の積
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-11-04 07:54:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,619 bytes |
| コンパイル時間 | 2,145 ms |
| コンパイル使用メモリ | 207,208 KB |
| 最終ジャッジ日時 | 2025-01-15 19:39:03 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 WA * 1 |
| other | AC * 24 WA * 3 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
#pragma region mint
template <int MOD>
struct Fp
{
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD)
{
if (val < 0)
v += MOD;
}
constexpr int getmod()
{
return MOD;
}
constexpr Fp operator-() const noexcept
{
return val ? MOD - val : 0;
}
constexpr Fp operator+(const Fp &r) const noexcept
{
return Fp(*this) += r;
}
constexpr Fp operator-(const Fp &r) const noexcept
{
return Fp(*this) -= r;
}
constexpr Fp operator*(const Fp &r) const noexcept
{
return Fp(*this) *= r;
}
constexpr Fp operator/(const Fp &r) const noexcept
{
return Fp(*this) /= r;
}
constexpr Fp &operator+=(const Fp &r) noexcept
{
val += r.val;
if (val >= MOD)
val -= MOD;
return *this;
}
constexpr Fp &operator-=(const Fp &r) noexcept
{
val -= r.val;
if (val < 0)
val += MOD;
return *this;
}
constexpr Fp &operator*=(const Fp &r) noexcept
{
val = val * r.val % MOD;
if (val < 0)
val += MOD;
return *this;
}
constexpr Fp &operator/=(const Fp &r) noexcept
{
long long a = r.val, b = MOD, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
val = val * u % MOD;
if (val < 0)
val += MOD;
return *this;
}
constexpr bool operator==(const Fp &r) const noexcept
{
return this->val == r.val;
}
constexpr bool operator!=(const Fp &r) const noexcept
{
return this->val != r.val;
}
friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept
{
return os << x.val;
}
friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept
{
return is >> x.val;
}
};
Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept
{
if (n == 0)
return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1)
t = t * a;
return t;
}
using mint = Fp<MOD>;
#pragma endregion
template <typename T>
class SegmentTree
{
private:
using Fn = function<T(T, T)>;
int N;
vector<T> dat;
T unit;
Fn func;
public:
SegmentTree() {}
SegmentTree(int n_, Fn func_, T unit_) : func(func_), unit(unit_)
{
N = 1;
while (N < n_)
N *= 2;
dat.assign(2 * N - 1, unit);
}
SegmentTree(const vector<T> &v, Fn func_, T unit_) : func(func_), unit(unit_)
{
N = 1;
int sz = v.size();
while (N < sz)
N *= 2;
dat.resize(2 * N - 1);
for (int i = 0; i < N; ++i)
dat[i + N - 1] = (i < sz ? v[i] : unit);
for (int i = N - 2; i >= 0; --i)
dat[i] = func(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void update(int k, T a)
{
k += N - 1;
dat[k] = a;
while (k > 0)
{
k = (k - 1) / 2;
dat[k] = func(dat[k * 2 + 1], dat[k * 2 + 2]);
}
}
T get(int k) { return dat[k + N - 1]; }
T query(int l, int r)
{
T vl = unit, vr = unit;
for (l += (N - 1), r += (N - 1); l < r; l >>= 1, r >>= 1)
{
if ((l & 1) == 0)
vl = func(vl, dat[l]);
if ((r & 1) == 0)
vr = func(vr, dat[--r]);
}
return func(vl, vr);
}
};
void solve()
{
int n;
cin >> n;
vector<ll> v(n);
rep(i, n) cin >> v[i];
vector<mint> a(n);
rep(i, n) a[i] = v[i];
vector<mint> b(n);
rep(i, n) b[i] = modpow(a[i], n - i);
auto prod = [](mint a, mint b) { return a * b; };
auto prod_ll = [](ll a, ll b) {
if (a == -1 or b == -1 or a * b >= ll(1e9))
return -1LL;
return a * b;
};
SegmentTree<ll> sg(v, prod_ll, 1);
SegmentTree<mint> sg1(a, prod, 1);
SegmentTree<mint> sg2(b, prod, 1);
vector<int> nxt0(n);
int z = n;
for (int i = n - 1; i >= 0; i--)
{
if (a[i].val == 0)
z = i;
nxt0[i] = z;
}
mint ans = 1;
rep(i, n)
{
if (a[i].val == 0)
continue;
int lo = i, hi = nxt0[i] + 1;
while (hi - lo > 1)
{
int mi = (lo + hi) / 2;
if (sg.query(i, mi) != -1)
lo = mi;
else
hi = mi;
}
int j = lo;
ll len = j - i;
mint p = sg2.query(i, j);
mint q = modpow(sg1.query(i, j), n - i - len);
ans *= p / q;
}
cout << ans << "\n";
}
int main()
{
solve();
}
stoq