結果
| 問題 |
No.1037 exhausted
|
| ユーザー |
stoq
|
| 提出日時 | 2020-11-04 08:30:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,248 bytes |
| コンパイル時間 | 2,877 ms |
| コンパイル使用メモリ | 207,708 KB |
| 最終ジャッジ日時 | 2025-01-15 19:40:30 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 12 WA * 3 TLE * 8 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename T>
struct dijkstra
{
int V;
T INF_d;
struct edge
{
int to;
T cost;
};
vector<vector<edge>> E;
vector<T> d;
using pt = pair<T, int>;
dijkstra(int V_) : V(V_)
{
E.resize(V);
d.resize(V);
if (is_same<int, T>::value)
INF_d = 2e9;
else
INF_d = 8e18;
}
void add_E(int a, int b, T c = 1, bool directed = true)
{
E[a].emplace_back(edge{b, c});
if (!directed)
E[b].emplace_back(edge{a, c});
}
void calc(int s)
{
priority_queue<pt, vector<pt>, greater<pt>> que;
fill(d.begin(), d.end(), INF_d);
que.emplace(T(0), s);
d[s] = 0;
while (!que.empty())
{
pt p = que.top();
que.pop();
int v = p.second;
if (d[v] < p.first)
continue;
for (auto &&e : E[v])
{
if (d[e.to] > d[v] + e.cost)
{
d[e.to] = d[v] + e.cost;
que.emplace(d[e.to], e.to);
}
}
}
}
};
void solve()
{
ll n, V, L;
cin >> n >> V >> L;
vector<ll> x(n), v(n), w(n);
rep(i, n) cin >> x[i] >> v[i] >> w[i];
dijkstra<ll> ds((n + 2) * (V + 1));
auto f = [&](int vertex, int rem) {
return vertex * (V + 1) + rem;
};
rep(i, n - 1) rep(j, V + 1)
{
ll d = x[i + 1] - x[i];
if (d <= j)
{
ds.add_E(f(i + 1, j), f(i + 2, j - d), 0);
}
}
if (x[0] <= V)
ds.add_E(f(0, V), f(1, V - x[0]), 0);
rep(j, V + 1)
{
ll d = L - x[n - 1];
if (d <= j)
{
ds.add_E(f(n, j), f(n + 1, j - d), 0);
}
}
rep(i, n)
{
rep(j, V)
{
ds.add_E(f(i + 1, j), f(i + 1, min(j + v[i], V)), w[i]);
}
}
rep(j, V) ds.add_E(f(n + 1, j + 1), f(n + 1, j), 0);
ds.calc(f(0, V));
ll ans = ds.d[f(n + 1, 0)];
cout << (ans == ds.INF_d ? -1 : ans) << "\n";
}
int main()
{
solve();
}
stoq