結果

問題 No.1037 exhausted
ユーザー stoqstoq
提出日時 2020-11-04 08:30:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 4,248 bytes
コンパイル時間 2,544 ms
コンパイル使用メモリ 218,012 KB
実行使用メモリ 333,236 KB
最終ジャッジ日時 2024-07-22 09:48:16
合計ジャッジ時間 15,940 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 WA -
testcase_08 AC 2 ms
5,376 KB
testcase_09 WA -
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 AC 507 ms
293,388 KB
testcase_21 AC 437 ms
279,836 KB
testcase_22 AC 327 ms
254,016 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 1

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

struct io_init
{
  io_init()
  {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
  if (a > b)
  {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
  if (a < b)
  {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b)
{
  return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
  fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
  os << p.first << " " << p.second;
  return os;
}
#pragma endregion

template <typename T>
struct dijkstra
{
  int V;
  T INF_d;
  struct edge
  {
    int to;
    T cost;
  };
  vector<vector<edge>> E;
  vector<T> d;
  using pt = pair<T, int>;
  dijkstra(int V_) : V(V_)
  {
    E.resize(V);
    d.resize(V);
    if (is_same<int, T>::value)
      INF_d = 2e9;
    else
      INF_d = 8e18;
  }

  void add_E(int a, int b, T c = 1, bool directed = true)
  {
    E[a].emplace_back(edge{b, c});
    if (!directed)
      E[b].emplace_back(edge{a, c});
  }

  void calc(int s)
  {
    priority_queue<pt, vector<pt>, greater<pt>> que;
    fill(d.begin(), d.end(), INF_d);
    que.emplace(T(0), s);
    d[s] = 0;
    while (!que.empty())
    {
      pt p = que.top();
      que.pop();
      int v = p.second;
      if (d[v] < p.first)
        continue;
      for (auto &&e : E[v])
      {
        if (d[e.to] > d[v] + e.cost)
        {
          d[e.to] = d[v] + e.cost;
          que.emplace(d[e.to], e.to);
        }
      }
    }
  }
};

void solve()
{
  ll n, V, L;
  cin >> n >> V >> L;
  vector<ll> x(n), v(n), w(n);
  rep(i, n) cin >> x[i] >> v[i] >> w[i];
  dijkstra<ll> ds((n + 2) * (V + 1));

  auto f = [&](int vertex, int rem) {
    return vertex * (V + 1) + rem;
  };

  rep(i, n - 1) rep(j, V + 1)
  {
    ll d = x[i + 1] - x[i];
    if (d <= j)
    {
      ds.add_E(f(i + 1, j), f(i + 2, j - d), 0);
    }
  }
  if (x[0] <= V)
    ds.add_E(f(0, V), f(1, V - x[0]), 0);
  rep(j, V + 1)
  {
    ll d = L - x[n - 1];
    if (d <= j)
    {
      ds.add_E(f(n, j), f(n + 1, j - d), 0);
    }
  }

  rep(i, n)
  {
    rep(j, V)
    {
      ds.add_E(f(i + 1, j), f(i + 1, min(j + v[i], V)), w[i]);
    }
  }

  rep(j, V) ds.add_E(f(n + 1, j + 1), f(n + 1, j), 0);
  ds.calc(f(0, V));
  ll ans = ds.d[f(n + 1, 0)];
  cout << (ans == ds.INF_d ? -1 : ans) << "\n";
}

int main()
{
  solve();
}
0