結果
問題 | No.1027 U+1F4A0 |
ユーザー | renjyaku_int |
提出日時 | 2020-11-04 19:08:27 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 12,823 bytes |
コンパイル時間 | 2,550 ms |
コンパイル使用メモリ | 225,588 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-22 09:59:54 |
合計ジャッジ時間 | 3,612 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,944 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,944 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 1 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define ALL(x) x.begin(), x.end() #define rep(i, n) for (int i = 0; i < (n); i++) #define debug(v) \ cout << #v << ":"; \ for (auto x : v) \ { \ cout << x << ' '; \ } \ cout << endl; #define INF 1000000000 #define mod 1000000007 using ll = long long; const ll LINF = 1001002003004005006ll; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; // ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; } ////////////////////////////////////////////////////// using Real = double; using Point = complex<Real>; const Real EPS = 1e-10; const Real pi = acosl(-1); //入出力補助 istream &operator>>(istream &is, Point &p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream &operator<<(ostream &os, Point &p) { return os << fixed << setprecision(12) << p.real() << ' ' << p.imag(); } inline bool eq(Real a, Real b) { return fabs(a - b) < EPS; } Point operator*(const Point &p, const Real &d) { return Point(real(p) * d, imag(p) * d); } struct Line { Point p1, p2; Line() = default; Line(Point p1, Point p2) : p1(p1), p2(p2) {} //Ax + By = C Line(Real A, Real B, Real C) { if (eq(A, 0)) p1 = Point(0, C / B), p2 = Point(1, C / B); else if (eq(B, 0)) p1 = Point(C / A, 0), p2 = Point(C / A, 1); else p1 = Point(0, C / B), p2 = Point(C / A, 0); } }; struct Segment : Line { Segment() = default; Segment(Point p1, Point p2) : Line(p1, p2) {} }; struct Circle { Point center; Real r; Circle() = default; Circle(Point center, Real r) : center(center), r(r) {} }; ///////////////////////////////////////////////////////// // 点 p を反時計回りに theta 回転 Point rotate(Real theta, const Point &p) { return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag()); } Real radian_to_degree(Real r) { return r * 180.0 / pi; } Real degree_to_radian(Real d) { return d * pi / 180.0; } //三角形の面積,サラスの公式 Real area_triangle(Point a, Point b, Point c) { Point x = b - a, y = c - a; return fabs(x.real() * y.imag() - x.imag() * y.real()) / 2; } //v //外積 Real cross(Point a, Point b) { return real(a) * imag(b) - imag(a) * real(b); } //v //内積 Real dot(Point a, Point b) { return real(a) * real(b) + imag(a) * imag(b); } //v //平行判定,外積0かをみる bool parallel(Line a, Line b) { return eq(cross(a.p1 - a.p2, b.p1 - b.p2), 0.0); } //v //垂直判定,内積0かをみる bool orthogonal(Line a, Line b) { return eq(dot(a.p1 - a.p2, b.p1 - b.p2), 0.0); } //v //正射影,pからlに下した垂線の足を求める Point projection(Line l, Point p) { //ベクトルl上のどの位置に垂線の足が来るか求める Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2); return l.p1 + (l.p1 - l.p2) * k; } Point projection(Segment l, Point p) { Real k = dot(l.p1 - l.p2, p - l.p1) / norm(l.p1 - l.p2); return l.p1 + (l.p1 - l.p2) * k; } //v //反射,直線lに関し点pと線対称な点を返す Point reflection(Line l, Point p) { Point h = projection(l, p); return (p + (h - p) + (h - p)); } Point reflection(Segment l, Point p) { Point h = projection(l, p); return (p + (h - p) + (h - p)); } //二点間の距離 Real dis(Point a, Point b) { return abs(a - b); } //点と直線の距離 Real dis(Line l, Point p) { return abs(p - projection(l, p)); } //v //COUNTER CLOCKWISE,返す値は↓を参照 //https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C int ccw(Point a, Point b, Point c) { b -= a; c -= a; if (cross(b, c) > EPS) return 1; //COUNTER CLOCKWISE else if (cross(b, c) < -EPS) return -1; //CLOCKWISE else if (dot(b, c) < 0) return 2; //c--a--b ONLINE BACK else if (norm(b) < norm(c)) return -2; //a--b--c ONLINE FRONT else return 0; //a--c--b ON SEGMENT } //v //3点が作る三角形の外心 //面積0の三角形を渡すと分母に面積があるので壊れるかも Point circumcenter(Point A, Point B, Point C) { Real S = area_triangle(A, B, C); Real a = dis(B, C), b = dis(A, C), c = dis(A, B); return A * (a * a * (b * b + c * c - a * a) / (16 * S * S)) + B * (b * b * (c * c + a * a - b * b) / (16 * S * S)) + C * (c * c * (a * a + b * b - c * c) / (16 * S * S)); } //交差判定 //直線状に乗るか bool intersect(Line l, Point p) { return abs(ccw(l.p1, l.p2, p)) != 1; } //直線の交差判定,外積 bool intersect(Line l1, Line l2) { return abs(cross(l1.p2 - l1.p1, l2.p2 - l2.p1)) > EPS or abs(cross(l1.p2 - l1.p1, l2.p2 - l1.p1)) < EPS; } //線分に点が乗るかの判定,ccw bool intersect(Segment s, Point p) { return ccw(s.p1, s.p2, p) == 0; } //直線と線分の交差判定 bool intersect(Line l, Segment s) { return cross(l.p2 - l.p1, s.p1 - l.p1) * cross(l.p2 - l.p1, s.p2 - l.p1) < EPS; } //円と直線の交差判定 bool intersect(Circle c, Line l) { return dis(l, c.center) <= c.r + EPS; } //円上かどうか,内部かどうかではない bool intersect(Circle c, Point p) { return abs(abs(p - c.center) - c.r) < EPS; } //v //線分と線分の交差判定 bool intersect(Segment s, Segment t) { return ccw(s.p1, s.p2, t.p1) * ccw(s.p1, s.p2, t.p2) <= 0 and ccw(t.p1, t.p2, s.p1) * ccw(t.p1, t.p2, s.p2) <= 0; } //線分と円の交差判定,交点の個数を返す int intersect(Circle c, Segment l) { Point h = projection(l, c.center); //直線まるっと円の外側 if (norm(h - c.center) - c.r * c.r > EPS) return 0; Real d1 = abs(c.center - l.p1), d2 = abs(c.center - l.p2); //線分が円内 if (d1 < c.r + EPS and d2 < c.r + EPS) return 0; if ((d1 < c.r - EPS and d2 > c.r + EPS) or (d2 < c.r - EPS and d1 > c.r + EPS)) return 1; //円の外部にまるまるはみ出ていないか if (dot(l.p1 - h, l.p2 - h) < 0) return 2; return 0; } //円と円の位置関係,共通接線の個数を返す int intersect(Circle c1, Circle c2) { if (c1.r < c2.r) swap(c1, c2); Real d = abs(c1.center - c2.center); //2円が離れている if (c1.r + c2.r < d) return 4; //2円が外接する if (eq(c1.r + c2.r, d)) return 3; //2円が交わる if (c1.r - c2.r < d) return 2; //円が内接する if (eq(c1.r - c2.r, d)) return 1; //内包 return 0; } //交点 //線分の交点はintersectをチェックしてokなら直線の交点をやる //intersectをチェックすること //v Point crosspoint(Line l, Line m) { Real A = cross(m.p2 - m.p1, m.p1 - l.p1); Real B = cross(m.p2 - m.p1, l.p2 - l.p1); if (eq(A, 0) and eq(B, 0)) return l.p1; if (eq(B, 0)) throw "NAI"; return l.p1 + A / B * (l.p2 - l.p1); } Point crosspoint(Segment l, Segment m) { return crosspoint(Line(l), Line(m)); } vector<Point> crosspoint(Circle c, Line l) { vector<Point> ret; Point h = projection(l, c.center); Real d = sqrt(c.r * c.r - norm(h - c.center)); Point e = (l.p2 - l.p1) * (1 / abs(l.p2 - l.p1)); if (c.r * c.r + EPS < norm(h - c.center)) return ret; if (eq(dis(l, c.center), c.r)) { ret.push_back(h); return ret; } ret.push_back(h + e * d); ret.push_back(h - e * d); return ret; } //要verify, vector<Point> crosspoint(Circle c, Segment s) { Line l = Line(s.p1, s.p2); int ko = intersect(c, s); if (ko == 2) return crosspoint(c, l); vector<Point> ret; if (ko == 0) return ret; ret = crosspoint(c, l); if (ret.size() == 1) return ret; vector<Point> rret; //交点で挟める方を返す if (dot(s.p1 - ret[0], s.p2 - ret[0]) < 0) rret.push_back(ret[0]); else rret.push_back(ret[1]); return rret; } //v vector<Point> crosspoint(Circle c1, Circle c2) { vector<Point> ret; int isec = intersect(c1, c2); if (isec == 0 or isec == 4) return ret; Real d = abs(c1.center - c2.center); Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); Real t = atan2(c2.center.imag() - c1.center.imag(), c2.center.real() - c1.center.real()); ret.push_back(c1.center + Point(cos(t + a) * c1.r, sin(t + a) * c1.r)); ret.push_back(c1.center + Point(cos(t - a) * c1.r, sin(t - a) * c1.r)); return ret; } //v //点pから引いた円cの接線の接点を返す vector<Point> tangent(Circle c, Point p) { return crosspoint(c, Circle(p, sqrt(norm(c.center - p) - c.r * c.r))); } //v //二円の共通接線,Lineの2点は接点を表す vector<Line> tangent(Circle c1, Circle c2) { vector<Line> ret; if (c1.r < c2.r) swap(c1, c2); Real g = norm(c1.center - c2.center); //中心が一致するならない if (eq(g, 0)) return ret; Point u = (c2.center - c1.center) / sqrt(g); Point v = rotate(pi * 0.5, u); for (int s : {-1, 1}) { Real h = (c1.r + s * c2.r) / sqrt(g); if (eq(1 - h * h, 0)) { ret.push_back(Line(c1.center + u * c1.r, c1.center + (u + v) * c1.r)); } else if (1 - h * h > 0) { Point uu = u * h, vv = v * sqrt(1 - h * h); ret.push_back(Line(c1.center + (uu + vv) * c1.r, c2.center - (uu + vv) * c2.r * s)); ret.push_back(Line(c1.center + (uu - vv) * c1.r, c2.center - (uu - vv) * c2.r * s)); } } return ret; } //v //最小包含円を返す 計算量は期待値O(n) Circle MinimumBoundingCircle(vector<Point> v) { int n = v.size(); //ランダムシャッフル.いぢわるされたくないもんだ mt19937 mt(time(0)); shuffle(v.begin(), v.end(), mt); Circle ret(0, 0); //2点で円を作る auto make_circle2 = [&](Point a, Point b) { return Circle((a + b) * 0.5, dis(a, b) / 2); }; //3点で円を作る auto make_circle3 = [&](Point A, Point B, Point C) { Point cent = circumcenter(A, B, C); return Circle(cent, dis(cent, A)); }; auto isIn = [&](Point a) { return dis(ret.center, a) < ret.r + EPS; }; ret = make_circle2(v[0], v[1]); for (int i = 2; i < n; i++) { //v[i]が円に入っていないなら if (!isIn(v[i])) { //円内にないなら点v[i]は必ず円周上に来る ret = make_circle2(v[0], v[i]); for (int j = 1; j < i; j++) { if (!isIn(v[j])) { //この時iとjが円周上を考える ret = make_circle2(v[i], v[j]); //最後の1点の決定 for (int k = 0; k < j; k++) { if (!isIn(v[k])) { ret = make_circle3(v[i], v[j], v[k]); } } } } } } return ret; } //ABC022Big Bang Real closest_pair(vector<Point> ps) { sort(ALL(ps), [&](Point a, Point b) { return real(a) < real(b); }); function<Real(int, int)> rec = [&](int l, int r) { if (r - l <= 1) return 1e18; int m = (l + r) / 2; Real x = real(ps[m]); Real ret = min(rec(l, m), rec(m, r)); inplace_merge(begin(ps) + l, begin(ps) + m, begin(ps) + r, [&](Point a, Point b) { return imag(a) < imag(b); }); // 分割を跨いで最小距離があるか調べる vector<Point> b; for (int i = l; i < r; i++) { if (abs(real(ps[i]) - x) >= ret) continue; for (int j = (int)b.size() - 1; j >= 0; j--) { if (abs(imag(ps[i] - b[j])) >= ret) break; ret = min(ret, abs(ps[i] - b[j])); } b.push_back(ps[i]); } return ret; }; return rec(0, (int)ps.size()); } signed main() { cin.tie(0); ios::sync_with_stdio(0); int a,b; cin>>a>>b; if(a*2>b&&a<b){ cout<<8<<"\n"; } else if(a*2==b||a==b){ cout<<4<<"\n"; } else{ cout<<0<<"\n"; } return 0; }