結果
| 問題 |
No.1283 Extra Fee
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2020-11-06 21:34:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,896 bytes |
| コンパイル時間 | 2,455 ms |
| コンパイル使用メモリ | 214,384 KB |
| 最終ジャッジ日時 | 2025-01-15 20:21:26 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 WA * 9 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> srtunq(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl
#else
#define dbg(x) {}
#endif
template<typename T>
struct ShortestPath
{
int V, E;
int INVALID = -1;
std::vector<std::vector<std::pair<int, T>>> to;
ShortestPath() = default;
ShortestPath(int V) : V(V), E(0), to(V) {}
void add_edge(int s, int t, T len) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
to[s].emplace_back(t, len);
E++;
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// Complexity: O(E log E)
void Dijkstra(int s) {
assert(0 <= s and s < V);
dist.assign(V, std::numeric_limits<T>::max());
dist[s] = 0;
prev.assign(V, INVALID);
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while(!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto nx : to[v]) {
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Bellman-Ford algorithm
// Complexity: O(VE)
bool BellmanFord(int s, int nb_loop) {
assert(0 <= s and s < V);
dist.assign(V, std::numeric_limits<T>::max());
dist[s] = 0;
prev.assign(V, INVALID);
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == std::numeric_limits<T>::max()) continue;
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
upd = true;
}
}
}
if (!upd) return true;
}
return false;
}
// Warshall-Floyd algorithm
// Complexity: O(E + V^3)
std::vector<std::vector<T>> dist2d;
void WarshallFloyd() {
dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max()));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second);
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] = std::numeric_limits<T>::max()) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] = std::numeric_limits<T>::max()) continue;
dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
}
};
int main()
{
int N, M;
cin >> N >> M;
ShortestPath<lint> graph(N * N * 2);
vector cost(N, vector<lint>(N));
while (M--) {
int h, w;
int c;
cin >> h >> w >> c;
h--, w--;
cost[h][w] = c;
}
REP(i, N) REP(j, N) cost[i][j]++;
const int D = N * N;
REP(i, N) REP(j, N - 1) {
graph.add_edge(i * N + j, i * N + j + 1, cost[i][j + 1]);
graph.add_edge(i * N + j + 1, i * N + j, cost[i][j]);
graph.add_edge(D + i * N + j + 1, D + i * N + j, cost[i][j]);
graph.add_edge(D + i * N + j, D + i * N + j + 1, cost[i][j + 1]);
}
REP(i, N - 1) REP(j, N) {
graph.add_edge(i * N + j, (i + 1) * N + j, cost[i + 1][j]);
graph.add_edge((i + 1) * N + j, i * N + j, cost[i][j]);
graph.add_edge(D + (i + 1) * N + j, D + i * N + j, cost[i][j]);
graph.add_edge(D + i * N + j, D + (i + 1) * N + j, cost[i + 1][j]);
}
REP(i, D) {
graph.add_edge(i, i + D, 0);
}
array<int, 4> dx { 1, -1, 0, 0 };
array<int, 4> dy { 0, 0, 1, -1 };
REP(i, N)
REP(j, N)
{
REP(d, 4) {
int ni = i + dx[d], nj = j + dy[d];
if (ni < 0 or nj < 0 or ni >= N or nj >= N) {
continue;
}
graph.add_edge(i * N + j, D + ni * N + j, 1);
}
}
graph.Dijkstra(0);
dbg(graph.dist);
cout << graph.dist.back() << '\n';
}
hitonanode