結果

問題 No.1281 Cigarette Distribution
ユーザー HaarHaar
提出日時 2020-11-06 22:38:25
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,765 bytes
コンパイル時間 1,956 ms
コンパイル使用メモリ 202,832 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-22 13:21:28
合計ジャッジ時間 3,217 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 2 ms
5,376 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...) ((void)0)
#endif

template <typename T, typename U>
bool chmin(T &a, const U &b){
  return (a > b ? a = b, true : false);
}

template <typename T, typename U>
bool chmax(T &a, const U &b){
  return (a < b ? a = b, true : false);
}

template <typename T, size_t N, typename U>
void fill_array(T (&a)[N], const U &v){
  std::fill((U*)a, (U*)(a + N), v);
}

template <typename T, size_t N, size_t I = N>
auto make_vector(const std::array<int, N> &a, T value = T()){
  static_assert(I >= 1);
  static_assert(N >= 1);
  if constexpr (I == 1){
    return std::vector<T>(a[N - I], value);
  }else{
    return std::vector(a[N - I], make_vector<T, N, I - 1>(a, value));
  }
}

template <typename T>
std::ostream& operator<<(std::ostream &s, const std::vector<T> &a){
  for(auto it = a.begin(); it != a.end(); ++it){
    if(it != a.begin()) s << " ";
    s << *it;
  }
  return s;
}

template <typename T>
std::istream& operator>>(std::istream &s, std::vector<T> &a){
  for(auto &x : a) s >> x;
  return s;
}

std::string YesNo(bool value){return value ? "Yes" : "No";}
std::string YESNO(bool value){return value ? "YES" : "NO";}
std::string yesno(bool value){return value ? "yes" : "no";}

template <typename T>
void putl(const T &value){
  std::cout << value << "\n";
}

template <typename Head, typename ... Tail>
void putl(const Head head, const Tail &... tail){
  std::cout << head << " ";
  putl(tail ...);
}

namespace haar_lib {
  template <int32_t M>
  class modint {
    uint32_t val_;

  public:
    constexpr static auto mod(){return M;}

    constexpr modint(): val_(0){}
    constexpr modint(int64_t n){
      if(n >= M) val_ = n % M;
      else if(n < 0) val_ = n % M + M;
      else val_ = n;
    }

    constexpr auto& operator=(const modint &a){val_ = a.val_; return *this;}
    constexpr auto& operator+=(const modint &a){
      if(val_ + a.val_ >= M) val_ = (uint64_t)val_ + a.val_ - M;
      else val_ += a.val_;
      return *this;
    }
    constexpr auto& operator-=(const modint &a){
      if(val_ < a.val_) val_ += M;
      val_ -= a.val_;
      return *this;
    }
    constexpr auto& operator*=(const modint &a){
      val_ = (uint64_t)val_ * a.val_ % M;
      return *this;
    }
    constexpr auto& operator/=(const modint &a){
      val_ = (uint64_t)val_ * a.inv().val_ % M;
      return *this;
    }

    constexpr auto operator+(const modint &a) const {return modint(*this) += a;}
    constexpr auto operator-(const modint &a) const {return modint(*this) -= a;}
    constexpr auto operator*(const modint &a) const {return modint(*this) *= a;}
    constexpr auto operator/(const modint &a) const {return modint(*this) /= a;}

    constexpr bool operator==(const modint &a) const {return val_ == a.val_;}
    constexpr bool operator!=(const modint &a) const {return val_ != a.val_;}

    constexpr auto& operator++(){*this += 1; return *this;}
    constexpr auto& operator--(){*this -= 1; return *this;}

    constexpr auto operator++(int){auto t = *this; *this += 1; return t;}
    constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}

    constexpr static modint pow(int64_t n, int64_t p){
      if(p < 0) return pow(n, -p).inv();

      int64_t ret = 1, e = n % M;
      for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M;
      return ret;
    }

    constexpr static modint inv(int64_t a){
      int64_t b = M, u = 1, v = 0;

      while(b){
        int64_t t = a / b;
        a -= t * b; std::swap(a, b);
        u -= t * v; std::swap(u, v);
      }

      u %= M;
      if(u < 0) u += M;

      return u;
    }

    constexpr static auto frac(int64_t a, int64_t b){return modint(a) / modint(b);}

    constexpr auto pow(int64_t p) const {return pow(val_, p);}
    constexpr auto inv() const {return inv(val_);}

    friend constexpr auto operator-(const modint &a){return modint(M - a.val_);}

    friend constexpr auto operator+(int64_t a, const modint &b){return modint(a) + b;}
    friend constexpr auto operator-(int64_t a, const modint &b){return modint(a) - b;}
    friend constexpr auto operator*(int64_t a, const modint &b){return modint(a) * b;}
    friend constexpr auto operator/(int64_t a, const modint &b){return modint(a) / b;}

    friend std::istream& operator>>(std::istream &s, modint &a){s >> a.val_; return s;}
    friend std::ostream& operator<<(std::ostream &s, const modint &a){s << a.val_; return s;}

    template <int N>
    static auto div(){
      static auto value = inv(N);
      return value;
    }

    explicit operator int32_t() const noexcept {return val_;}
    explicit operator int64_t() const noexcept {return val_;}
  };
}


namespace haar_lib {}

namespace solver {
  using namespace haar_lib;

  constexpr int m1000000007 = 1000000007;
  constexpr int m998244353 = 998244353;

  void init(){
    std::cin.tie(0);
    std::ios::sync_with_stdio(false);
    std::cout << std::fixed << std::setprecision(12);
    std::cerr << std::fixed << std::setprecision(12);
    std::cin.exceptions(std::ios_base::failbit);
  }

  using mint = modint<m1000000007>;

  mint f(int N, int X){
    if(X == 1) return N;
    //if(N == 1 and X == 1) return 1;
    if(N <= 2 * (X - 1)) return 0;

    int k = N / X;

    mint ret = mint::pow(k + 1, N % X);

    ret *= mint::pow(k, X - N % X);

    return ret;
  }

  void solve(){
    int N, M; std::cin >> N >> M;

    for(int X = 1; X <= M; ++X){
      std::cout << f(N, X) << "\n";
    }
  }
}

int main(){
  solver::init();
  while(true){
    try{
      solver::solve();
      std::cout << std::flush;
      std::cerr << std::flush;
    }catch(const std::istream::failure &e){
      break;
    }catch(...){
      break;
    }
  }
  return 0;
}
0