結果

問題 No.1283 Extra Fee
ユーザー kjnh10kjnh10
提出日時 2020-11-06 22:55:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 556 ms / 2,000 ms
コード長 22,138 bytes
コンパイル時間 2,626 ms
コンパイル使用メモリ 233,516 KB
実行使用メモリ 219,320 KB
最終ジャッジ日時 2024-11-16 06:51:06
合計ジャッジ時間 11,098 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 26 ms
16,692 KB
testcase_12 AC 31 ms
17,876 KB
testcase_13 AC 18 ms
11,820 KB
testcase_14 AC 87 ms
52,524 KB
testcase_15 AC 131 ms
63,044 KB
testcase_16 AC 33 ms
16,460 KB
testcase_17 AC 502 ms
211,168 KB
testcase_18 AC 499 ms
212,180 KB
testcase_19 AC 490 ms
214,772 KB
testcase_20 AC 501 ms
211,300 KB
testcase_21 AC 520 ms
212,116 KB
testcase_22 AC 451 ms
206,208 KB
testcase_23 AC 509 ms
216,708 KB
testcase_24 AC 483 ms
216,840 KB
testcase_25 AC 531 ms
216,840 KB
testcase_26 AC 556 ms
216,712 KB
testcase_27 AC 521 ms
216,836 KB
testcase_28 AC 554 ms
216,840 KB
testcase_29 AC 543 ms
219,320 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "header.hpp"

//%snippet.set('header')%
//%snippet.fold()%
#ifndef HEADER_H
#define HEADER_H

// template version 2.0
using namespace std;
#include <bits/stdc++.h>

// varibable settings
template <class T> constexpr T inf = numeric_limits<T>::max() / 2.1;

#define _overload3(_1, _2, _3, name, ...) name
#define _rep(i, n) repi(i, 0, n)
#define repi(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define rep(...) _overload3(__VA_ARGS__, repi, _rep, )(__VA_ARGS__)
#define _rrep(i, n) rrepi(i, 0, n)
#define rrepi(i, a, b) for (ll i = (ll)((b)-1); i >= (ll)(a); --i)
#define r_rep(...) _overload3(__VA_ARGS__, rrepi, _rrep, )(__VA_ARGS__)
#define each(i, a) for (auto &&i : a)
#define all(x) (x).begin(), (x).end()
#define sz(x) ((int)(x).size())
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define mt(...) make_tuple(__VA_ARGS__)
#define ub upper_bound
#define lb lower_bound
#define lpos(A, x) (lower_bound(all(A), x) - A.begin())
#define upos(A, x) (upper_bound(all(A), x) - A.begin())
template <class T, class U> inline void chmax(T &a, const U &b) { if ((a) < (b)) (a) = (b); }
template <class T, class U> inline void chmin(T &a, const U &b) { if ((a) > (b)) (a) = (b); }
template <typename X, typename T> auto make_table(X x, T a) { return vector<T>(x, a); }
template <typename X, typename Y, typename Z, typename... Zs> auto make_table(X x, Y y, Z z, Zs... zs) { auto cont = make_table(y, z, zs...); return vector<decltype(cont)>(x, cont); }

template <class T> T cdiv(T a, T b){ assert(a >= 0 && b > 0); return (a+b-1)/b; }

#define is_in(x, a, b) ((a) <= (x) && (x) < (b))
#define uni(x) sort(all(x)); x.erase(unique(all(x)), x.end())
#define slice(l, r) substr(l, r - l)

typedef long long ll;
typedef long double ld;
using vl = vector<ll>;
using vvl = vector<vl>;
using pll = pair<ll, ll>;

template <typename T>
using PQ = priority_queue<T, vector<T>, greater<T>>;
void check_input() { assert(cin.eof() == 0); int tmp; cin >> tmp; assert(cin.eof() == 1); }

#if defined(PCM) || defined(LOCAL)
#else
#define dump(...) ;
#define dump_1d(...) ;
#define dump_2d(...) ;
#define cerrendl ;
#endif

#endif /* HEADER_H */
//%snippet.end()%
#line 2 "solve.cpp"
template<class T=ll> using vec = vector<T>;
struct Fast { Fast() { std::cin.tie(0); ios::sync_with_stdio(false); } } fast;

// snippet:segment_tree {{{
template <typename X> struct SegmentTree {  // {{{
    private:
        using F = function<X(X, X)>;
        using index = int;
        int n;  // 元の配列のサイズ
        int N;  // n以上の最小の2冪
        vector<X> node;
        F merge;
        X identity;

    public:
        SegmentTree() {}
        SegmentTree(vector<X> a, F f, X id) : merge(f), identity(id) {
            n = (int)a.size();
            N = 1;
            while (N < n) N *= 2;
            node.resize(2 * N - 1, identity);
            for (int i = 0; i < n; i++) node[i + N - 1] = a[i];
            for (int i = N - 2; i >= 0; i--)
                node[i] = merge(node[2 * i + 1], node[2 * i + 2]);
        }
        SegmentTree(int sz, F f, X id) : SegmentTree(vector<X>(sz, id), f, id) {}

        X& operator[](index i) { return node[i + N - 1]; }

        void set(index i, X val) {
            i += (N - 1);
            node[i] = val;
            while (i > 0) {
                i = (i - 1) / 2;
                node[i] = merge(node[2 * i + 1], node[2 * i + 2]);
            }
        }

        void add(index i, X val) {
            i += (N - 1);
            node[i] += val;
            while (i > 0) {
                i = (i - 1) / 2;
                node[i] = merge(node[2 * i + 1], node[2 * i + 2]);
            }
        }

        // query for [a, b)
        X query(index a, index b, int k = 0, index l = 0, index r = -1) {
            if (r < 0) r = N;
            if (r <= a || b <= l) return identity;
            if (a <= l && r <= b) return node[k];

            X lv = query(a, b, 2 * k + 1, l, (l + r) / 2);
            X rv = query(a, b, 2 * k + 2, (l + r) / 2, r);
            return merge(lv, rv);
        }

        index find_most_left(index l, const function<bool(X)>& is_ok){
            // lから右に探していってis_okが初めて成り立つようなindexを返す。
            // assume query(l, *) has monotonity
            // return index i s.t is_ok(query(l, i)) does not holds, but is_ok(query(l, i+1)) does.
            // if such i does not exist, return n
            index res = _find_most_left(l, is_ok, 0, 0, N, identity).first;
            assert(l <= res);
            return res;
        }
        pair<index, X> _find_most_left(index a, const function<bool(X)>& is_ok, int k, index l, index r, X left_value){
            // params:
            // left_value = (a < l ? query(a, l) : ex)
            // return (index i, X v)
            // i is the index in [a, n)^[l, r) s.t query(a, i+1) is ok but query(a, i) isn't ok. if such i does not exist, i = n
            // v is the value s.t query(a, r)

            if (r <= a) return {n, identity};  // 区間が全く被っていない
            else if (a <= l && !is_ok(merge(left_value, node[k]))) return {n, merge(left_value, node[k])};
            else if (k >= N-1) return {k - (N-1), merge(left_value, node[k])};
            else{
                auto [lv, xl] = _find_most_left(a, is_ok, 2 * k + 1, l, (l + r) / 2, left_value);
                if (lv != n) return {lv, xl};
                auto [rv, xr] = _find_most_left(a, is_ok, 2 * k + 2, (l + r) / 2, r, xl);
                return {rv, xr};
            }
        }

        index find_most_right(index r, const function<bool(X)>& is_ok){
            // rから左に探していってis_okが初めて成り立つようなindexを返す。
            // assume query(*, r) has monotonity
            // return index i s.t is_ok(query(i+1, r+1)) does not holds, but is_ok(query(i, r+1)) does.
            // if such i does not exist, return -1
            index res = _find_most_right(r+1, is_ok, 0, 0, N, identity).first;
            assert(res <= r);
            return res;
        }
        pair<index, X> _find_most_right(index b, const function<bool(X)>& is_ok, int k, index l, index r, X right_value){
            if (b <= l) return {-1, identity};  // 区間が全く被っていない
            else if (r <= b && !is_ok(merge(node[k], right_value))) return {-1, merge(node[k], right_value)};
            else if (k >= N-1) return {k - (N-1), merge(node[k], right_value)};
            else{
                auto [rv, xr] = _find_most_right(b, is_ok, 2 * k + 2, (l + r) / 2, r, right_value);
                if (rv != -1) return {rv, xr};
                auto [lv, xl] = _find_most_right(b, is_ok, 2 * k + 1, l, (l + r) / 2, xr);
                return {lv, xl};
            }
        }

#if defined(PCM) || defined(LOCAL)
        friend ostream& operator<<(ostream& os, SegmentTree<X>& sg) {  //
            os << "[";
            for (int i = 0; i < sg.n; i++) {
                os << sg[i] << (i == sg.n - 1 ? "]\n" : ", ");
            }
            return os;
        }
#endif
};/*}}}*/
// sample of initialize SegmentTree:
// -----------------------------------------------
// auto mymin=[](auto a, auto b){return min(a,b);};
// ll e = 1e18;
// SegmentTree<ll> seg(a, mymin, e);

// auto mymax=[](auto a, auto b){return max(a,b);};
// ll e = -1e18;
// SegmentTree<ll> seg(a, mymax, e);

// auto add=[](auto a, auto b){return a+b;};
// ll e = 0;
// SegmentTree<ll> seg(a, add, e);

// pair<int, int> get_nearest_index_of_smaller_element(int i){
//     auto left = seg.find_most_right(i, [&](auto x){return x < a[i];});
//     auto right = seg.find_most_left(i, [&](auto x){return x < a[i];});
//     return {left, right};
// }
// -----------------------------------------------
// snippet:segment_tree }}}

// snippet:edge {{{
template<class Cost=ll>
struct Edge {
    int from, to;
    Cost cost;
    int idx;
    Edge(){};
    Edge(int from_, int to_, Cost cost_, int idx_)
        : from(from_), to(to_), cost(cost_), idx(idx_) {}

    friend ostream& operator<<(ostream& os, const Edge& e) {
        // os << "(f:" << e.from << ", t:" << e.to << ", c:" << e.cost << ", i" << e.idx << ")";  // detailed
        os << "(" << e.from << "," << e.to << ")";
        return os;
    }
};
// snippet:edge }}}

// snippet:union_find {{{
struct union_find {
    vector<int> par;   // par[x]: parent of x. if root, -size.
    int gcount;         // count of groups

    union_find() {}
    union_find(int _n) : par(_n, -1), gcount(_n) {}
    bool merge(int x, int y) { 
        x = root(x);
        y = root(y);
        if (x != y) {
            if (par[y] < par[x]) swap(x, y);
            par[x] += par[y];
            par[y] = x;
            gcount--;
        }
        return x != y;
    } 
    int root(int x) {
        if (is_root(x)){
            return x;
        }
        else{
            return par[x] = root(par[x]);  // 経路圧縮
            // return root(par[x]);         // 経路圧縮なし
        }
    }
    bool is_root(int x) { return par[x] < 0; }
    bool same(int x, int y) { return root(x) == root(y); }
    int size(int x) { return -par[root(x)]; }

    map<int, vector<int>> group(){
        map<int, vector<int>> res;
        rep(i, sz(this->par)) { res[this->root(i)].pb(i); }
        return res;
    }

#if defined(PCM) || defined(LOCAL)  // {{{
    friend ostream& operator<<(ostream& os, union_find& uf) {
        auto group = uf.group();
        os << endl;
        each(g, group) { os << g << endl; }
        return os;
    }
#endif  // }}}
};
// snippet:union_find }}}

// snippet:tree {{{
template<class Cost=ll>
struct tree { 
    int n;
    int root;
    vector<int> par;   // par[i]: dfs木における親
    vector<Edge<Cost>*> edge;  // edge[i]: dfs木における親への辺のpointer
    vector<int> dfstrv;  // dfstrv[i]: dfs木でi番目に訪れるノード。dpはこれを逆順に回す
    vector<int> ord;    // ord[u]: uのdfs木における訪問順
    vector<int> end;    // end[u]: uのdfs終了時のカウンター
    vector<int> psize;  // psize[u]: uのpartial tree size
    // uの部分木は[ord[u], end[u])
    // ordとdfstrvは逆変換
    vector<int> depth;   // depth[i]: dfs木でのiの深さ
    vector<Cost> ldepth;  //  ldepth[i]: dfs木でのrootからの距離
    vector<vector<Edge<Cost>>> adj_list;       // 辺(隣接リスト)
    auto operator[](int pos) const { return adj_list[pos]; }
    vector<vector<int>> children;
    vector<int> euler_tour;
    vector<int> et_fpos;    // euler_tour first occurence position
    SegmentTree<int> _seg;  // seg(map(ord, euler_tour), mymin, 1e18)
    vector<int> head_of_comp;
    int _counter = 0;

    tree(){};/*{{{*/
    tree(int n_)
        : n(n_),
        par(n_),
        edge(n_),
        ord(n_),
        end(n_),
        psize(n_),
        depth(n_),
        ldepth(n_),
        adj_list(n_),
        children(n_),
        et_fpos(n_),
        head_of_comp(n_){};/*}}}*/
    void add_edge(int u, int v, Cost cost, int idx=-1) { /*{{{*/
        adj_list[u].emplace_back(u, v, cost, idx);
        adj_list[v].emplace_back(v, u, cost, idx);
    }                             /*}}}*/
    void add_edge(int u, int v) { /*{{{*/
        adj_list[u].emplace_back(u, v, 1, -1);
        adj_list[v].emplace_back(v, u, 1, -1);
    }                      /*}}}*/
    void build(int _root) { /*{{{*/
        root = _root;
        _counter = 0;
        par[root] = -1;
        edge[root] = nullptr;
        _dfs_psize(root, -1);
        _dfs_tree(root, -1, root);
        _dfs_et(root);
        vector<int> ini(2 * n - 1);
        rep(i, 2 * n - 1) ini[i] = ord[euler_tour[i]];
        _seg = SegmentTree<int>(
                ini, [](auto a, auto b) { return min(a, b); }, numeric_limits<int>().max());
    }                                /*}}}*/
    int _dfs_psize(int u, int pre) { /*{{{*/
        psize[u] = 1;
        each(e, adj_list[u]) {
            if (e.to == pre) continue;
            psize[u] += _dfs_psize(e.to, u);
        }
        return psize[u];
    }                                               /*}}}*/
    void _dfs_tree(int u, int pre, int head_node) { /*{{{*/
        dfstrv.pb(u);
        ord[u] = _counter;
        if (pre != -1) {
            depth[u] = depth[pre] + 1;
            ldepth[u] = ldepth[pre] + edge[u]->cost;
        }

        _counter++;
        {
            // set most heavy child to top
            int max_psize = 0;
            int most_heavy_i = -1;
            for(int i = 0; i < sz(adj_list[u]); ++i) {
                if (adj_list[u][i].to == pre) continue;
                if (psize[adj_list[u][i].to] > max_psize) {
                    most_heavy_i = i;
                    max_psize = psize[adj_list[u][i].to];
                }
            }
            if (most_heavy_i != -1) swap(adj_list[u][most_heavy_i], adj_list[u][0]);
        }

        head_of_comp[u] = head_node;
        rep(i, sz(adj_list[u])) {
            int v = adj_list[u][i].to;
            if (v == pre) continue;

            children[u].pb(v);
            par[v] = u;
            edge[v] = &adj_list[u][i];

            if (i == 0)
                _dfs_tree(v, u, head_node);  // continue components
            else
                _dfs_tree(v, u, v);  // new
        }
        end[u] = _counter;
    }                     /*}}}*/
    void _dfs_et(int u) { /*{{{*/
        et_fpos[u] = (int)euler_tour.size();
        euler_tour.pb(u);
        each(v, children[u]) {
            _dfs_et(v);
            euler_tour.pb(u);
        }
    }                       /*}}}*/
    bool is_leaf(int u) {
        return children[u].size() == 0;
    }
    int lca(int u, int v) { /*{{{*/
        if (u == v) return u;
        if (et_fpos[u] > et_fpos[v]) swap(u, v);
        return dfstrv[_seg.query(et_fpos[u], et_fpos[v])];
    }                        /*}}}*/
    int dist(int u, int v) { /*{{{*/
        int p = lca(u, v);
        return depth[u] + depth[v] - 2 * depth[p];
    }                          /*}}}*/
    Cost ldist(int u, int v) {  // length dist{{{
        int p = lca(u, v);
        return ldepth[u] + ldepth[v] - 2 * ldepth[p];
    }                           /*}}}*/
    pair<int, int> diameter() { /*{{{*/
        int u, v;
        Cost max_len = *max_element(all(ldepth));
        rep(i, n) {
            if (ldepth[i] == max_len) {
                u = i;
                break;
            }
        }
        Cost md = -1;
        rep(i, n) {
            Cost d = ldist(u, i);
            if (d > md) {
                v = i;
                md = d;
            }
        }
        return mp(u, v);
    }                                                /*}}}*/
    vector<pair<int, int>> hld_path(int u, int v, bool for_edge=true) {  //{{{
        // return {[l0, r0), [l1, r1), ....} for_edge=trueでlcaは除いて返すことに注意。
        vector<pair<int, int>> res;
        while (head_of_comp[u] != head_of_comp[v]) {
            if (depth[head_of_comp[u]] < depth[head_of_comp[v]]) {
                res.push_back({ord[head_of_comp[v]], ord[v]+1});
                v = par[head_of_comp[v]];
            } else {
                res.push_back({ord[head_of_comp[u]], ord[u]+1});
                u = par[head_of_comp[u]];
            }
        }
        res.push_back({min(ord[u], ord[v]) + (for_edge?1:0), max(ord[u], ord[v])+1});
        return res;
    }                              //}}}
#if defined(PCM) || defined(LOCAL) /*{{{*/
    friend ostream& operator<<(ostream& os, const tree& tr) {
        os << endl;
        os << "par:         " << tr.par << endl;
        os << "dfstrv:      " << tr.dfstrv << endl;
        os << "ord:         " << tr.ord << endl;
        os << "end:         " << tr.end << endl;
        os << "depth:       " << tr.depth << endl;
        os << "children:    " << tr.children << endl;
        os << "euler_tour:  " << tr.euler_tour << endl;
        os << "et_fpos:     " << tr.et_fpos << endl;
        os << "head_of_comp:" << tr.head_of_comp << endl;
        return os;
    }
#endif /*}}}*/
}; 
// snippet:tree }}}

// snippet:Graph {{{
template<class Cost=ll>
struct Graph {
    using Pos = int;  // int以外には対応しない。

    int n;  // 頂点数
    vector<vector<Edge<Cost>>> adj_list;
    auto operator[](Pos pos) const { return adj_list[pos]; }
    vector<Edge<Cost>> edges;
    tree<Cost> tr;
    Pos root;
    vector<int> _used_in_dfs;
    vector<int> lowlink;
    Cost zerocost;
    Cost infcost;

    Graph() {}
    Graph(int _n) : n(_n), adj_list(_n), tr(n), _used_in_dfs(n), zerocost(0LL), infcost(inf<Cost>) { }
    Graph(int _n, Cost zc, Cost ic) : n(_n), adj_list(_n), tr(n), _used_in_dfs(n), zerocost(zc), infcost(ic) { }

    void add_edge(Pos from, Pos to, Cost cost, int idx=-1) {/*{{{*/
        adj_list[from].emplace_back(from, to, cost, idx);
        edges.emplace_back(from, to, cost, idx);
    }
    void add_edge(Pos from, Pos to) {  // for ll
        adj_list[from].emplace_back(from, to, 1, -1);
        edges.emplace_back(from, to, 1, -1);
    }/*}}}*/

    void build_tree(Pos _root) {/*{{{*/
        root = _root;
        _dfs_tree(root);
        tr.build(root);
        _make_lowlink();
    }/*}}}*/

    vector<int> make_bipartite() {/*{{{*/
        union_find buf(2 * n);
        rep(u, n) {
            each(e, adj_list[u]) {
                buf.merge(u, e.to + n);
                buf.merge(e.to, u + n);
            }
        }

        vector<int> res(n, -1);
        rep(u, n) {
            if (buf.same(u, u + n)) return res;
        }
        rep(u, n) {
            if (buf.same(0, u)) res[u] = 0;
            else res[u] = 1;
        }
        return res;
    }/*}}}*/

    void _dfs_tree(Pos u) {/*{{{*/
        _used_in_dfs[u] = 1;
        each(e, adj_list[u]) {
            if (_used_in_dfs[e.to]) continue;
            tr.add_edge(u, e.to, e.cost);
            _dfs_tree(e.to);
        }
    }/*}}}*/

    void _make_lowlink() {/*{{{*/
        lowlink = vector<Pos>(n, numeric_limits<Pos>().max());
        r_rep(i, n) {
            Pos u = tr.dfstrv[i];
            chmin(lowlink[u], tr.ord[u]);

            each(e, adj_list[u]) {
                if (e.to == tr.par[u])
                    continue;
                else if (tr.ord[e.to] < tr.ord[u]) {
                    chmin(lowlink[u], tr.ord[e.to]);
                } else {
                    chmin(lowlink[u], lowlink[e.to]);
                }
            }
        }
    }/*}}}*/

    vector<Pos> get_articulation_points() {/*{{{*/
        if (sz(lowlink) == 0) throw("make_lowlik() beforehand");

        vector<Pos> res;
        if (sz(tr.children[root]) > 1) {
            res.push_back(root);
        }
        rep(u, 0, n) {
            if (u == root) continue;
            bool is_kan = false;
            each(v, tr.children[u]) {
                if (tr.ord[u] <= lowlink[v]) {
                    is_kan = true;
                }
            }
            if (is_kan) res.push_back(u);
        }
        return res;
    }/*}}}*/

    vector<Edge<Cost>> get_bridges() {/*{{{*/
        if (sz(lowlink) == 0) throw("make_lowlik() beforehand");
        vector<Edge<Cost>> res;
        each(edge, edges){
            if (tr.ord[edge.from] < lowlink[edge.to]) res.push_back(edge);
        }
        return res;
    }/*}}}*/

    vector<Edge<Cost>> kruskal_tree() {/*{{{*/
        // 使用される辺のvectorを返す
        vector<Edge<Cost>> res(n - 1);
        sort(all(edges), [&](auto l, auto r) { return l.cost < r.cost; });
        union_find uf(n);

        Cost total_cost = zerocost;
        int idx = 0;
        each(e, edges) {
            if (uf.same(e.from, e.to)) continue;
            uf.merge(e.from, e.to);
            total_cost = total_cost + e.cost;
            res[idx] = e;
            idx++;
        }
        assert(idx == n - 1);

        return res;
    }/*}}}*/

    vector<Cost> dijkstra(vector<Pos> starts) {  // 多点スタート{{{
        vector<Cost> dist(n, infcost);           // 最短距離
        PQ<pair<Cost, Pos>> pq;
        each(start, starts) {
            dist[start] = zerocost;
            pq.push(make_pair(zerocost, start));
        }
        while (!pq.empty()) {
            auto cp = pq.top();
            pq.pop();
            auto [cost, u] = cp;
            if (cost > dist[u]) continue;
            for (const auto& edge : adj_list[u]) {
                Cost new_cost = cost + edge.cost;  // TODO: 問題によってはここが変更の必要あり
                if (new_cost < dist[edge.to]) {
                    dist[edge.to] = new_cost;
                    pq.push(make_pair(new_cost, edge.to));
                }
            }
        }
        return dist;
    };/*}}}*/

    vector<Cost> dijkstra(Pos start) {  // 1点スタート{{{
        vector<Pos> starts = {start};
        return dijkstra(starts);
    };/*}}}*/
};
// snippet:Graph }}}

int solve() {
    // grid graphを通常のグラフに格納する。
    int h, m;
    cin >> h >> m;
    int w = h;
    int n = h * w;  // 頂点数
    vector<vector<ll>> cost(h, vector<ll>(w));
    rep(i, m) {
        int h,w;cin>>h>>w;
        int c;cin>>c;
        h--;w--;
        cost[h][w] = c;
    }

    Graph g(2*n);

    auto nid = [&](int i, int j){return (i*w + j);}; // int u = nid(i, j);
    auto pos = [&](int u) -> pair<int, int> { return {u/w, u%w}; }; // auto [i,j] = pos(u);

    int dx[] = {1, -1, 0, 0};
    int dy[] = {0, 0, 1, -1};
    rep(i, h) rep(j, w) {
        rep(dir, 4) {
            int ni = i + dx[dir];
            int nj = j + dy[dir];
            if (is_in(ni, 0, h) && is_in(nj, 0, w)) {
                g.add_edge(nid(i, j), nid(ni, nj), cost[ni][nj]+1);
                g.add_edge(nid(i, j), nid(ni, nj)+n, 1);
                g.add_edge(nid(i, j)+n, nid(ni, nj)+n, cost[ni][nj]+1);
            }
        }
    }
    auto d = g.dijkstra(0);
    cout << d[nid(h-1, w-1) + n] << endl;

    return 0; 
}


int main(){/*{{{*/
    solve();

    #if defined(PCM) || defined(LOCAL)
    check_input();
    #endif

    return 0;
}/*}}}*/
0