結果
| 問題 |
No.1284 Flip Game
|
| コンテスト | |
| ユーザー |
MTGS
|
| 提出日時 | 2020-11-06 23:49:59 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,310 bytes |
| コンパイル時間 | 1,842 ms |
| コンパイル使用メモリ | 191,992 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-22 13:49:50 |
| 合計ジャッジ時間 | 2,647 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 11 WA * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for (long long i = 0; i < (n); ++i)
using ll = long long;
using P = pair<ll,ll>;
using PP = pair<P,P>;
using vec = vector<ll>;
using vecp = vector<P>;
using mat = vector<vec>;
using matp = vector<vecp>;
const ll MOD = 1e9+7;
const ll INF = 1e18;
#define all(v) v.begin(), v.end()
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost = cost;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
int main(){
ll N,ans=INF;
cin >> N;
mat C(N,vec(N));
rep(i,N)rep(j,N){
cin >> C.at(i).at(j);
}
if(N==2){
cout << 2*min(C.at(0).at(1),C.at(1).at(0))+max(C.at(0).at(1),C.at(1).at(0)) << endl;
return 0;
}
rep(k,N)rep(l,N){
if(k==l) continue;
mcf_graph<ll,ll> graph(2*N+2);
rep(i,N)rep(j,N){
if(k!=i&&k!=j){
if(i==j){
graph.add_edge(i,N+j,0,C.at(i).at(j));
}else{
graph.add_edge(i,N+j,2,C.at(i).at(j));
}
}else if(l==i&&k==j){
graph.add_edge(i,N+j,1,C.at(i).at(j));
}
}
rep(i,N){
if(k!=i){
graph.add_edge(2*N,i,2,0);
if(l==i){
graph.add_edge(N+i,2*N+1,1,0);
}else{
graph.add_edge(N+i,2*N+1,2,0);
}
}else{
graph.add_edge(N+i,2*N+1,1,0);
}
}
P a=graph.flow(2*N,2*N+1,2*N-2);
ans=min(ans,a.second);
}
cout << ans << endl;
}
MTGS