結果
問題 | No.1284 Flip Game |
ユーザー | MTGS |
提出日時 | 2020-11-06 23:54:37 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,861 bytes |
コンパイル時間 | 2,216 ms |
コンパイル使用メモリ | 192,988 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-22 13:50:35 |
合計ジャッジ時間 | 3,201 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | WA | - |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | AC | 4 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 5 ms
5,376 KB |
testcase_20 | AC | 5 ms
5,376 KB |
testcase_21 | AC | 4 ms
5,376 KB |
testcase_22 | AC | 5 ms
5,376 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 4 ms
5,376 KB |
testcase_27 | AC | 5 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for (long long i = 0; i < (n); ++i) using ll = long long; using P = pair<ll,ll>; using PP = pair<P,P>; using vec = vector<ll>; using vecp = vector<P>; using mat = vector<vec>; using matp = vector<vecp>; const ll MOD = 1e9+7; const ll INF = 1e18; #define all(v) v.begin(), v.end() template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; int main(){ ll N,ans=INF; cin >> N; mat C(N,vec(N)); rep(i,N)rep(j,N){ cin >> C.at(i).at(j); } if(N==2){ cout << 2*min(C.at(0).at(1),C.at(1).at(0))+max(C.at(0).at(1),C.at(1).at(0)) << endl; return 0; } rep(k,N)rep(l,N){ if(k==l) continue; mcf_graph<ll,ll> graph(2*N+2); rep(i,N)rep(j,N){ if(k!=i&&k!=j){ if(i==j){ graph.add_edge(i,N+j,0,C.at(i).at(j)); }else{ graph.add_edge(i,N+j,2,C.at(i).at(j)); } }else if(i!=j&&k==j){ graph.add_edge(i,N+j,1,C.at(i).at(j)); } } rep(i,N){ if(k!=i){ graph.add_edge(2*N,i,2,0); if(l==i){ graph.add_edge(N+i,2*N+1,1,0); }else{ graph.add_edge(N+i,2*N+1,2,0); } }else{ graph.add_edge(N+i,2*N+1,1,0); } } P a=graph.flow(2*N,2*N+1,2*N-2); ans=min(ans,a.second); } rep(k,N)rep(l,N){ mcf_graph<ll,ll> graph(2*N+2); rep(i,N)rep(j,N){ if(i==j){ graph.add_edge(i,N+j,0,C.at(i).at(j)); }else{ graph.add_edge(i,N+j,2,C.at(i).at(j)); } } rep(i,N){ if(k==i){ graph.add_edge(2*N,i,1,0); }else{ graph.add_edge(2*N,i,2,0); } if(l==i){ graph.add_edge(N+i,2*N+1,1,0); }else{ graph.add_edge(N+i,2*N+1,2,0); } } P a=graph.flow(2*N,2*N+1,2*N-1); ans=min(ans,a.second); } cout << ans << endl; }