結果

問題 No.1283 Extra Fee
ユーザー nullnull
提出日時 2020-11-07 00:08:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 326 ms / 2,000 ms
コード長 5,829 bytes
コンパイル時間 2,120 ms
コンパイル使用メモリ 155,520 KB
実行使用メモリ 89,524 KB
最終ジャッジ日時 2024-11-16 06:53:21
合計ジャッジ時間 7,364 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 3 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 16 ms
7,936 KB
testcase_12 AC 20 ms
8,704 KB
testcase_13 AC 13 ms
6,816 KB
testcase_14 AC 57 ms
18,176 KB
testcase_15 AC 91 ms
27,004 KB
testcase_16 AC 18 ms
8,320 KB
testcase_17 AC 287 ms
81,716 KB
testcase_18 AC 297 ms
81,260 KB
testcase_19 AC 317 ms
84,712 KB
testcase_20 AC 292 ms
79,536 KB
testcase_21 AC 300 ms
80,860 KB
testcase_22 AC 268 ms
72,644 KB
testcase_23 AC 299 ms
87,316 KB
testcase_24 AC 313 ms
87,392 KB
testcase_25 AC 326 ms
87,480 KB
testcase_26 AC 324 ms
87,384 KB
testcase_27 AC 323 ms
87,388 KB
testcase_28 AC 326 ms
87,616 KB
testcase_29 AC 314 ms
89,524 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
このコード、と~おれ!
Be accepted!
∧_∧ 
(。・ω・。)つ━☆・*。
⊂   ノ    ・゜+.
 しーJ   °。+ *´¨)
          .· ´¸.·*´¨) ¸.·*¨)
		            (¸.·´ (¸.·'* ☆
*/

#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>

////多倍長整数, cpp_intで宣言
//#include <boost/multiprecision/cpp_int.hpp>
//using namespace boost::multiprecision;
//
//#pragma GCC target ("avx2")
//#pragma GCC optimization ("O3")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define repeat(i, n, m) for(int i = n; i < (m); ++i)
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a) //少数出力
#define printLdb(a) printf("%.50Lf\n", a) //少数出力
#define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ)
#define prints(s) printf("%s\n", s.c_str()) //string出力
#define all(x) (x).begin(), (x).end()
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */
#define inf numeric_limits<double>::infinity();
#define linf numeric_limits<long double>::infinity()

using ll = long long;
using ull = unsigned long long;

constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1e9 + 7;
constexpr ll mod = 998244353;
constexpr long double eps = 1e-6;
const long double PI = acosl(-1.0L);

using namespace std;

void scans(string& str) {
	char c;
	str = "";
	scanf("%c", &c);
	if (c == '\n')scanf("%c", &c);
	while (c != '\n' && c != -1 && c != ' ') {
		str += c;
		scanf("%c", &c);
	}
}

void scanc(char& str) {
	char c;
	scanf("%c", &c);
	if (c == -1)return;
	while (c == '\n') {
		scanf("%c", &c);
	}
	str = c;
}

double acot(double x) {
	return PI / 2 - atan(x);
}

ll LSB(ll n) { return (n & (-n)); }

template<typename T>
inline T chmin(T& a, const T& b) {
	if (a > b)a = b;
	return a;
}

template<typename T>
inline T chmax(T& a, const T& b) {
	if (a < b)a = b;
	return a;
}

//atcoder library
//#include <atcoder/all>
//using namespace atcoder;

/*-----------------------------------------ここからコード-----------------------------------------*/

/*
* @title template(graph)
* @docs kyopro/docs/graph_template.md
*/

template<typename T>
struct edge {
	T cost;
	int from, to;

	edge(int from, int to) : from(from), to(to), cost(T(1)) {}
	edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};

template<typename T = int>
struct graph {

	int n;
	bool directed, weighted;

	vector<vector<edge<T>>> g;

	graph(int n, bool directed, bool weighted) : g(n), n(n), directed(directed), weighted(weighted) {}

	void add_edge(int from, int to, T cost = T(1)) {
		g[from].emplace_back(from, to, cost);
		if (not directed) {
			g[to].emplace_back(to, from, cost);
		}
	}

	vector<edge<T>>& operator[](const int& idx) {
		return g[idx];
	}

	void read(int e, bool one_indexed) {
		int a, b, c = 1;
		while (e--) {
			scanf("%d%d", &a, &b);
			if (weighted) {
				scanf("%d", &c);
			}
			if (one_indexed)--a, --b;
			add_edge(a, b, c);
		}
	}

	void read(int e, bool one_indexed, const string& format) {
		int a, b;
		T c = T(1);
		while (e--) {
			scanf("%d%d", &a, &b);
			if (weighted) {
				scanf(format.c_str(), &c);
			}
			if (one_indexed)--a, --b;
			add_edge(a, b, c);
		}
	}

};

/*
* @title dijkstra
* @docs kyopro/docs/dijkstra.md
*/


template<typename T = int>
vector<T> dijkstra(graph<T>& g, const int& v, const int& n, const T Inf) {
	priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq;
	vector<T> res(n);
	fill(all(res), Inf);
	priq.push({ 0, v });
	res[v] = 0;
	int top;
	while (!priq.empty()) {
		top = priq.top().second;
		priq.pop();
		for (const auto& aa : g[top]) {
			if (res[top] + aa.cost >= res[aa.to])continue;
			res[aa.to] = aa.cost + res[top];
			priq.push({ res[aa.to], aa.to });
		}
	}
	return res;
}

int main() {

	int n, m;
	scanf("%d%d", &n, &m);
	vector<vector<ll>> x(n, vector<ll>(n));
	rep(i, m) {
		int h, w, c;
		scanf("%d%d%d", &h, &w, &c);
		--h, --w;
		x[h][w] = c;
	}
	graph<ll> g(n * n * 2, true, true);
	rep(i, n - 1) {
		rep(j, n) {
			g.add_edge(i * n + j, (i + 1) * n + j, x[i + 1][j] + 1);
			g.add_edge((i + 1) * n + j, i * n + j, x[i][j] + 1);
			g.add_edge(i * n + j, (i + 1) * n + j + n * n, 1);
			g.add_edge((i + 1) * n + j, i * n + j + n * n, 1);
			g.add_edge(i * n + j + n * n, (i + 1) * n + j + n * n, x[i + 1][j] + 1);
			g.add_edge((i + 1) * n + j + n * n, i * n + j + n * n, x[i][j] + 1);
		}
	}
	rep(i, n) {
		rep(j, n - 1) {
			g.add_edge(i * n + j, i * n + j + 1, x[i][j + 1] + 1);
			g.add_edge(i * n + j + 1, i * n + j, x[i][j] + 1);
			g.add_edge(i * n + j, i * n + j + 1 + n * n, 1);
			g.add_edge(i * n + j + 1, i * n + j + n * n, 1);
			g.add_edge(i * n + j + n * n, i * n + j + 1 + n * n, x[i][j + 1] + 1);
			g.add_edge(i * n + j + 1 + n * n, i * n + j + n * n, x[i][j] + 1);
		}
	}
	auto ans = dijkstra(g, 0, n * n * 2, LINF);
	printf("%lld\n", ans[n * n * 2 - 1]);

	Please AC;
}
0