結果
問題 | No.1283 Extra Fee |
ユーザー | null |
提出日時 | 2020-11-07 00:08:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 326 ms / 2,000 ms |
コード長 | 5,829 bytes |
コンパイル時間 | 2,120 ms |
コンパイル使用メモリ | 155,520 KB |
実行使用メモリ | 89,524 KB |
最終ジャッジ日時 | 2024-11-16 06:53:21 |
合計ジャッジ時間 | 7,364 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 3 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 16 ms
7,936 KB |
testcase_12 | AC | 20 ms
8,704 KB |
testcase_13 | AC | 13 ms
6,816 KB |
testcase_14 | AC | 57 ms
18,176 KB |
testcase_15 | AC | 91 ms
27,004 KB |
testcase_16 | AC | 18 ms
8,320 KB |
testcase_17 | AC | 287 ms
81,716 KB |
testcase_18 | AC | 297 ms
81,260 KB |
testcase_19 | AC | 317 ms
84,712 KB |
testcase_20 | AC | 292 ms
79,536 KB |
testcase_21 | AC | 300 ms
80,860 KB |
testcase_22 | AC | 268 ms
72,644 KB |
testcase_23 | AC | 299 ms
87,316 KB |
testcase_24 | AC | 313 ms
87,392 KB |
testcase_25 | AC | 326 ms
87,480 KB |
testcase_26 | AC | 324 ms
87,384 KB |
testcase_27 | AC | 323 ms
87,388 KB |
testcase_28 | AC | 326 ms
87,616 KB |
testcase_29 | AC | 314 ms
89,524 KB |
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> ////多倍長整数, cpp_intで宣言 //#include <boost/multiprecision/cpp_int.hpp> //using namespace boost::multiprecision; // //#pragma GCC target ("avx2") //#pragma GCC optimization ("O3") //#pragma GCC optimization ("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ #define inf numeric_limits<double>::infinity(); #define linf numeric_limits<long double>::infinity() using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-6; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> inline T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> inline T chmax(T& a, const T& b) { if (a < b)a = b; return a; } //atcoder library //#include <atcoder/all> //using namespace atcoder; /*-----------------------------------------ここからコード-----------------------------------------*/ /* * @title template(graph) * @docs kyopro/docs/graph_template.md */ template<typename T> struct edge { T cost; int from, to; edge(int from, int to) : from(from), to(to), cost(T(1)) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} }; template<typename T = int> struct graph { int n; bool directed, weighted; vector<vector<edge<T>>> g; graph(int n, bool directed, bool weighted) : g(n), n(n), directed(directed), weighted(weighted) {} void add_edge(int from, int to, T cost = T(1)) { g[from].emplace_back(from, to, cost); if (not directed) { g[to].emplace_back(to, from, cost); } } vector<edge<T>>& operator[](const int& idx) { return g[idx]; } void read(int e, bool one_indexed) { int a, b, c = 1; while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf("%d", &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } void read(int e, bool one_indexed, const string& format) { int a, b; T c = T(1); while (e--) { scanf("%d%d", &a, &b); if (weighted) { scanf(format.c_str(), &c); } if (one_indexed)--a, --b; add_edge(a, b, c); } } }; /* * @title dijkstra * @docs kyopro/docs/dijkstra.md */ template<typename T = int> vector<T> dijkstra(graph<T>& g, const int& v, const int& n, const T Inf) { priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq; vector<T> res(n); fill(all(res), Inf); priq.push({ 0, v }); res[v] = 0; int top; while (!priq.empty()) { top = priq.top().second; priq.pop(); for (const auto& aa : g[top]) { if (res[top] + aa.cost >= res[aa.to])continue; res[aa.to] = aa.cost + res[top]; priq.push({ res[aa.to], aa.to }); } } return res; } int main() { int n, m; scanf("%d%d", &n, &m); vector<vector<ll>> x(n, vector<ll>(n)); rep(i, m) { int h, w, c; scanf("%d%d%d", &h, &w, &c); --h, --w; x[h][w] = c; } graph<ll> g(n * n * 2, true, true); rep(i, n - 1) { rep(j, n) { g.add_edge(i * n + j, (i + 1) * n + j, x[i + 1][j] + 1); g.add_edge((i + 1) * n + j, i * n + j, x[i][j] + 1); g.add_edge(i * n + j, (i + 1) * n + j + n * n, 1); g.add_edge((i + 1) * n + j, i * n + j + n * n, 1); g.add_edge(i * n + j + n * n, (i + 1) * n + j + n * n, x[i + 1][j] + 1); g.add_edge((i + 1) * n + j + n * n, i * n + j + n * n, x[i][j] + 1); } } rep(i, n) { rep(j, n - 1) { g.add_edge(i * n + j, i * n + j + 1, x[i][j + 1] + 1); g.add_edge(i * n + j + 1, i * n + j, x[i][j] + 1); g.add_edge(i * n + j, i * n + j + 1 + n * n, 1); g.add_edge(i * n + j + 1, i * n + j + n * n, 1); g.add_edge(i * n + j + n * n, i * n + j + 1 + n * n, x[i][j + 1] + 1); g.add_edge(i * n + j + 1 + n * n, i * n + j + n * n, x[i][j] + 1); } } auto ans = dijkstra(g, 0, n * n * 2, LINF); printf("%lld\n", ans[n * n * 2 - 1]); Please AC; }