結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | zkou |
提出日時 | 2020-11-07 10:40:01 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 4,435 bytes |
コンパイル時間 | 371 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 513,152 KB |
最終ジャッジ日時 | 2024-09-13 00:42:15 |
合計ジャッジ時間 | 94,660 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | AC | 38 ms
53,420 KB |
testcase_02 | TLE | - |
testcase_03 | AC | 2,890 ms
399,924 KB |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | AC | 2,708 ms
405,644 KB |
testcase_10 | AC | 2,927 ms
403,068 KB |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | AC | 2,864 ms
444,884 KB |
testcase_14 | TLE | - |
testcase_15 | AC | 2,660 ms
408,652 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | AC | 2,627 ms
418,072 KB |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | AC | 2,695 ms
417,584 KB |
testcase_28 | AC | 2,893 ms
432,288 KB |
testcase_29 | TLE | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
ソースコード
import sys import heapq input = sys.stdin.readline class mcf_graph: def __init__(self, n): self.n = n self.pos = [] self.g = [[] for _ in range(n)] def add_edge(self, from_, to, cap, cost): assert 0 <= from_ < self.n assert 0 <= to < self.n m = len(self.pos) self.pos.append((from_, len(self.g[from_]))) self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost)) self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost)) return m class edge: def __init__(self, from_, to, cap, flow, cost): self.from_ = from_ self.to = to self.cap = cap self.flow = flow self.cost = cost def get_edge(self, i): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost) def edges(self): ret = [] for i in range(len(self.pos)): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)) return ret def slope(self, s, t, flow_limit=float('inf')): # assert 0 <= s < self.n # assert 0 <= t < self.n # assert s != t dual = [0] * self.n dist = [float('inf')] * self.n pv = [-1] * self.n pe = [-1] * self.n vis = [False] * self.n def _dual_ref(): nonlocal dual, dist, pv, pe, vis dist = [float('inf')] * self.n pv = [-1] * self.n pe = [-1] * self.n vis = [False] * self.n que = [(0, s)] dist[s] = 0 while que: _, v = heapq.heappop(que) if vis[v]: continue vis[v] = True if v == t: break for i in range(len(self.g[v])): e = self.g[v][i] if vis[e.to] or e.cap == 0: continue cost = e.cost - dual[e.to] + dual[v] if dist[e.to] > dist[v] + cost: dist[e.to] = dist[v] + cost pv[e.to] = v pe[e.to] = i heapq.heappush(que, (dist[e.to], e.to)) if not vis[t]: return False for v in range(self.n): if not vis[v]: continue dual[v] -= dist[t] - dist[v] return True flow = 0 cost = 0 prev_cost = -1 result = [(flow, cost)] while flow < flow_limit: if not _dual_ref(): break c = flow_limit - flow v = t while v != s: c = min(c, self.g[pv[v]][pe[v]].cap) v = pv[v] v = t while v != s: e = self.g[pv[v]][pe[v]] e.cap -= c self.g[v][e.rev].cap += c v = pv[v] d = -dual[s] flow += c cost += c * d if prev_cost == d: result.pop() result.append((flow, cost)) prev_cost = cost return result def flow(self, s, t, flow_limit=float('inf')): return self.slope(s, t, flow_limit)[-1] class _edge: def __init__(self, to, rev, cap, cost): self.to = to self.rev = rev self.cap = cap self.cost = cost N, M = map(int, input().split()) g = mcf_graph(N + 4 * M) for i in range(M): u, v, c, d = map(int, input().split()) u -= 1 v -= 1 # コスト c の、一回しか通れない無向辺 u2 = N + i v2 = N + M + i g.add_edge(u, u2, 1, 0) g.add_edge(v, u2, 1, 0) g.add_edge(u2, v2, 1, c) g.add_edge(v2, u, 1, 0) g.add_edge(v2, v, 1, 0) # コスト d の、一回しか通れない無向辺 u3 = N + 2 * M + i v3 = N + 3 * M + i g.add_edge(u, u3, 1, 0) g.add_edge(v, u3, 1, 0) g.add_edge(u3, v3, 1, d) g.add_edge(v3, u, 1, 0) g.add_edge(v3, v, 1, 0) print(g.flow(0, N - 1, 2)[1])